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ABSTRACT

The visual analysis of surface shape from texture and surface contour is treated within a computational
framework. The aim of this study is to detennine valid constraints that are sufficient to allow surface
orientation and distance (up to a multiplicative constant) to be computed from the image of surface texture
and of surface contours. The report is in three parts.

Part I consists of a review of major theories of surface perception, a discussion of vision as computation and
of the nature in which three-dimensional information is manifest in the image, and a study of the
representation of local surface orientation. 1 A polar form of representation is proposed which makes explicit
surface tilt ("which way") and surface sau ("how much").

Part II reconsiders the familiar 'texture gradient". The perspective transformation is described as two
independent transformations that take a patch of surface texture into a patch of image texture: scaling
inversely by the distance to the surface and foreshortening according to surface orientation. A measure of
texture that varies only with scaling is described (called the characteristic dimension) whose reciprocal gives
distance information. Evidence for uniformity of the physical texture (requisite for computing the depth map
by this method) is provided by local regularity and global similarity of the image texture. A measure of
texture that varies only with foreshortening may, in principle, be used to compute surface orientation, but it
would be difficult to interpret without knowledge of the physical texture.

-,,Part IlI examines our perception of surface contours, an ability that has received almost no theoretical
attention. -It is shown that surface contours are strong sources ofr information about local surface shape.
Plausible constraints are given that would allow surface orientation to be computed from the image of surface
contours. The problem of inferring surface shape from the image of a surface contour has two aspects:
constraining the shape of the curve in three dimensions on the basis of its image, and constraining the
relationship between the surface contour and the underlying surface. Computational constraints for both
aspects of the problem are demonstrated, and their plausibilit' is discussed. Implications for the analysis of
specular reflections and shading are noted.

Thesis Supervisor: David Marr
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PART I
THE COMPUTATIONAL BASIS

1. INTRODUCTION

Texture and surface contours are two sources of information about the 3-D shape of visible surfaces which is

available in a single image. 'Ibis report examines the computational basis for deriving an explicit description

of surface shape from texture and from surface contours. In each case, the computation cannot be achieved

solely on the basis of the image information -- additional constraints must be introduced. Identifying some of

these constraints is the primary goal this report. Summaries of the three sections of the report are given in the

following.

1.1 Summary of part I

A review of current theories of surface perception is provided which leads to (a) a discussion of how 3-D

in formation is preserved in the image and (b) a discussion of the representation of surfaces.

1. 3-D information is present in the image, in part, as geometrical configurations
such as parallelism, inflection points, and regularity. While often described as
invariants, they do not have unique inverses back into three dimensions -- very
different 3-1) configurations may project to the sarne image configuration. So their
3-D interpretation must be further constrained.

2. Surface orientation is probably represented in a polar form which makes explicit
the orientation of surface (ill ("which way") and the magnitude of surface slant("how much") rather than the well-known Cartesian form based on Gradient

space. The reasons are:

(a) Surface orientation (up to a reflection in slant) is naturally represented in a
polar tbrm. The ambiguity in the direction of surface tilt is implicit when tilt is
specified only as orientation (0 < r < v). 'Ibis ambiguity would have to be
expressed explicitly in a Cartesian form.

(b) The computations of slant and of tilt may then be performed independently.

(c) It is observed that imprecision in apparent slant, when present, is not
necessarily accompanied by imprecision in tilt. Ibis is more easily attributed to a
polar form which orthogonalives slant and tilt, than to a Cartesian form (each of
whose components necessarily are functions of slant and tilt).

(d) Since information about the orientation of surface tilt is often more reliable
than information about the magnitude of the slant, discontinuities in surface
orientation are more reliably detected when those components are independent.
Furthermore, the detection of discontinuities in surface orientation can then be
treated as two distinct "subprohlems": detecting tilt discontinuities and detecting
slant discontinuities.

.A
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3. Slant is probably not represented by either the tangent or the cosine of the slant
angle (those being two natural choices). On the other hand, slant represented
directly in terms of slant angle would require an internal precision of no more than
than one part in one hundred to account for the experimental data.

1.2 Summary or part II

The second part of the report re-examincs the problems of extracting surface shape information from the

familiar "texture gradient". The results arc summarized in the following:

1. The perspective projection may be usefully thought of as comprising two
independent transformations to any patch of surface texture: scaling and
foreshortening. Scaling is due to distance, foreshortening is due to surface
orientation. An orthogonal decomposition of the problems of computing distance
and surface orientation is therefore suggested: When computing distance, the
texture measure should vary only with scaling, when computing surface
orientation, the measure should vary only with foreshortening.

2. Texture density is not a useful measure for computing distance or surface
orientation, since it varies with both scaling and foreshortening.

3. Distance up to a scale factor may be computed from the reciprocals of
characteristic dimensions, which correspond to non foreshortened dimensions on
the surface. Characteristic dimensions may be defined geometrically by the
following: (a) they are locally parallel, (b) they are oriented perpendicular to the
texture gradient, and (c) they are parallel to the orientation of greatest texture
regularity. The computation requires that the surface texture be uniform.

4. Evidence for uniformity of the actual surface texture is both global and local.
Locally the texture must project as regular; globally the texture must be
qualitatively similar. The assumption that allows one to deduce uniformity is as
follows: if the surface texture has small size variance (which may be detected
locally), the mean size is assumed constant regardless of where the texture is placed
on the surface. Justification for this assumption stems from the following:
constraints on the texture size that cause it to be roughly constant (and therefore of
small variance) often occur independent of position on the surface.

5. Surface orientation may be computed from the depth map (by computing the
gradient of distance) when significant scaling variation is present in the image,
otherwise the depth map indicates a flat surface despite the foreshortening
gradient (this occurs with curved surftces in orthographic projection). But
measures of foreshortening that do not vary with scaling (such as aspect ratio) are
difficult to interpret unless the particular foreshortening function is known which
relates the measure to surface slant. Furthermore, successive occlusion associated
with viewing texture which lies in relief relative to the mean surface level acts to
confound the apparent foreshortening. Slant is therefore difficult to accurately
compute. However the tilt may be computed as the orientation of the
characteristic dimensions.

1.3 Summary ol' part III

The third part of the report examines our perception of surface contours. (e.g.. the edges of shadows cast on a

surface, gloms contours on specular surfaces, wrinkles, seams, and pigmentation markings). Generally the
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contours interior to the silhouette of an object have been regarded as merely contributing to texture, or to

making the sorLce appear solid, or to simply increasing the complexity of the image. In fact, surface

contours proN ide information about surface shape, given certain restrictions on their interpretation.

I. The analysis of the shape of a surface from surfiace contours may be decomposed
into two problems: reconstructing the corresponding 3-1) curves (the conlour
generwors) and determining their relation to the surface. lIhis decomposition
separates the problem of determining the projective geometry from that of
determining the intrinsic geometry.

2. The first problem is constrained by the following restrictions: general position,
planarity, symmetry, and minimum curvature variation.

3. The second problem is reduced by assuming the angle between the surface and
the plane containing the contour generator is constant. Then if that angle is a right
angle, the contour generator is geodesic: if the angle is zero, the contour generator
is asymptotic. In either case the contour generator is also a line of curvature. Since
it is also planar, the surface is locally a cylinder.

4. We also arrive at the cylinder restriction in the case of parallel surface contours,
given two fonns of the principle of general position (that of viewpoint and of
contour generator placement on the surface). The opacity restriction is also useful,
given the ;Aanarity and geodesic restrictions, in understanding how an opaque
surface lies under a contour generator.

5. Surface markings on synthetic and biological objects and the edges of cast
shadu',s are often geodesic and planar. Gloss contours are asymptotic and planar,
at least :n the case of orthographic projection and distant light sources. Hence if
the contour gencrator can be reconstructed as a 3-1) curve, the surface orientation
along the curve can be computed subject to either the geodesic or asymptotic
interpretations.

6. Constraints on the intrinsic geometry are also provided by surface contours even
if the contour generator is not well dctermined in space: Gloss contours,
highlights, and shading edges tell us of the local Gaussian curvature in some cases.

- -. -_"
-"m
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2. CURRENT THEORIES OF SURFACE PERC(EPTION

Surface perception is usually considered to be a process of reconstructing three-dimensional scenes from

two-dimensional images. The dimension that is missing in die image is the distance from the eye to points in

the env ironment. 'lbat dimension appears to be recovered somehow and its recovery has often been taken as

the primary goal of surface perception. While controversy has arisen regarding the source of the distance

information (e.g., whether it is derived exclusively from the image or in part from previous experience) it

appears irrefutible that we gain a sense of depth from a single monocular image, such as a commonplace

photograph. It would therefore seem natural to assume that the visual system internally expresses the

three-dimensionality in terms of perceived distance (at least, distance specified up to a scale factor).1

But a single image is not what is usually presented to the visual system, for we move through the

environment with both eyes open and the environment often contains objects engaged in independent

motion. This has lead some investigators to treat single images as special, and to expect that their

interpretation, distinguished as "picture perception", is either some derivative of our ability to interpret the

d)namic environment [Gibson, 1971; Kennedy, 19741 or a learned skill of interpretation analogous to reading,

subject to cultural convention (e.g., [Arnheim, 19541). Nonetheless, the visual system is often presented with

input that is effectively a single image, due to various combinations of monocular presentation, stationary

observer, and motionless or distant subjects. An effectively single image also occurs with binocular vision at

distances where the stereo disparities are negligible and there is no relative motion. It is reasonable to expect

that the visual system has developed means to derive useful information about the environment in these

commonly occurring instances. 2

The single image does not have a unique 3-I) interpretation, for the projection that produces the image is a

many-to-one mapping, and therefore does not have a unique inverse. 3 Regardless, we usually derive a

definite and accurate 3-D interpretation from a given image. So unless we choose to disregard this paradox,

we are faced with explaining how we analyze a single image despite its ambiguity. The problem is to

understand the source of additional information that allows the unique interpretation to be chosen from the

infinity of possible interpretations.

As traditionally understood, there is a perceptual process that recovers distance from the retinal image (or

images). Alternatives to recovering distance, such as recovering surface orientation relative to the viewer

(slant) or some qualitiative description of surface shape, have also been investigated. But by and large,

distance is usually regarded as the primary consequence of the 3-1) interpretation, as evidenced in terms such

as "depth cues".

Several controversial issues have emerged which have become focal points for the three major theories that

1. The orientation of patches of the visible surfaces is a complimentary means for describing three-dimensional scenes. Surface
orientation will bc discussed in section 4

2 As we attend to details in a scene the Ions accommodates to bring into focus points at different distances We probe in depth as we
var) the accomodation Hut the conitribution of iwus to out perception of distaicc is weak 1ogic. 112, p. 26: Graham. 1%5, p. 519).
We haic no othcr direct way to "eract" or "rccovc" 3-1) iformation from the single image.

3 Ihis was actuall) demonstrated. c g., b% the wcll-kiiown Ames room [tlcison, 1901.

__ __ _ __ _ _ _
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will be reviewed momentarily. These issues are:

(a) the infoirmation content of the image. This issue is emphasitcd by Gibson. ie
proposes that complete 3-I) in formation is available in the images presented as one
moves through the environment with binocular vision. Similar claims are made
about the information carried by texture in the single image.

(b) the need for interpretation and assunptions in order to process that infornation.
This issue is emphasized by the depth cue theory (due largely to Helmholtz) which

* proposes that the image is interpreted on the basis of prior experience.

(c) the strategies for efficient processing. Tiis is emphasized by the Praegnanz
theory (derived from the Gestaltists) which attributes the apparent immediacy of
the 3-1) interpretation to the application of rules embedded in a representation
which is an analog of 3-D space.

These three theories of surface perception will be discussed in the following.

2.1 Gibson's theory

Gibson was the first to suggest that space perception is reducible to the perception of visual surfaces, and that
the fundamental sensations of space are the impressions of surface and edge [Gibson, 1950a]. 'hese
statements contrasted with the notion of the time that space was the object of perception. While not specific
as to how surfaces might be represented, his hypothesis led to a shift in research from attempting to
understand how the visual system might recover distance for all points in the visual field (as proposed by
I lelmholtz [19251) to studying how the various spatial properties of the visible surfaces are perceived.

Gibson's theory of surface perception [1950a, 1950b, 19661 may be viewed as an hypothesis concerning the
information content of the visual input, and an hypothesis on how that information is extracted.

First, concerning the inflrmation content, it is claimed that there are "variables in the stimulation"
sufficient to specify "the essential properties or qualities of a surface" including hardness, color, illumination.
slant, and distance [Gibson, 1950b]. For instance,

The distance at any point on a receding surface may be given by the relative density
of the texture. the finer the densiy, the greater being the distance.

The slant of a sutface to the line tf regard at an), point ina)' be given by tie rate of
increase of elemints at the corresponding point in tie inage. The direction of the I
slant would correspond to the direction oy'the gradient [Gibson, 1950bl.

Initicilly the theory stated that image texture carries sufficient information to perceive these surface qualitites.
This conjecture was later dropped: instead the dynamic and binocular images that occur when moving
through the environment were expected to provide the complete 3-1) information. But the later conjecture is
also wrong. Our perception of visual motion from successive images and of depth from stereo pairs of images
must embody assumptions (c01. (Ullnan. 1979: Marr & Poggio, 19781). Simply stated, the Nisual input does

not specify a unique 3-1) scene.

I.ittlc is said of contours in this theory. In particular, the contours that comprise the ioundary of an
object's silhouette are distrusted as a source of 3-1) infoination since a given image curve may arise from

~ -.



Stevens Current theories

infinitely many 3-1) curves. And surface contours in general are considered only to the extent that they

comprise texture (e.g., the furrows of a plowed field).

ILct us now discuss how 3-1) information is extracted according to this theory. Given the evident richness

of visual information provided by natural scenes, Gibson proposes the "generalized psychophysical

hypothesis" IGibson, 19591:

... for everj, aspect or property of the phenomenal world of an individual in contact
with his environment, however subtle, there is a variable of the energy flux at his
receptors, however complex, with which the phenomenal property would correspond
ira psychophysical experiment could be perfonned [p. 465].

The major implication of this hypothesis is that the 3-D information impinging on the retina need only be

"registered" in a manner perhaps analogous to a touch sensor registering physical contact. There are two

points of contention here: whether there is, in fact, sufficient information in the (possibly dynamic) image to

specify a unique 3-D reconstruction, and secondly, whether the computational problems of extracting that

information arc trivial. First, we consider the sufficiency issue.

Gibson predicted that there is a one-to-one correspondence between the subjective qualities (e.g., apparent

slant) of a perceived surface and the actual qualities of the actual surface. Considerable effort has been spent

attempting to empirically verify this claim. The following conclusion was drawn in a review by Epstein and

Park [1964]:

Concert. .'ng the psychophysical hypothesis it can be said that Gibson has not proved
his case. The experimental data simply do not support the hypothesis of perfect
psychophysical correspondence. Nor does the evidence support the contention that
perception is "in contact with the environmnent," that is. veridical, in cases of
psychophysical correspondence [p. 362).

Furthermore they quote Boring [1951]:

What Gibson calls a "theor," is thus only a description of a correlation, a theory
which tells how but skinps oil why ... eventually science must go deeper into the
tneans of correlation. must show iti psychology why a gradient of texture produces a
perceived depth, not merely that it does [p. 3621.

By and large, Gibson believes that the laws governing light insure that complete 3-1) information must be

present in the image especially in the dynamic case of moving through the environment. The difficulty

experienced by others in empirically demonstrating this fact has been attributed to the experimental

methodology which attempts to isolate the contributions of a particular source of 3-1) information, often

termed "reduction conditions". Such experiments are criticized as not "ecological", hence not necessarily

involving the processes that govern everyday visual perception:

flut the research reviewed by Epstein and Park may not be appropriate to test
psychophysical hIypotheses ... it seems unlikely that our perception of objects in space
is based on the processing tf only one or a Jew cues, but rather deptends on the
gcneration of a scah' rf space fromt which all references are made. Since in the
natural environnmenmt all l" thie infiination about space is consistent, we probably
make use of it all it an integrated ltshion. rather than separately cue by cue. What
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seems most unhkely is that cues are processed individually and then added together
in some manner1[ laber & I lershenson, 1973, p. 3021.

It is intercsting to observe that Gibson is essentially advocating a scheme for integrating multiple sources of
visual information although he does not believe that vision involves "intermediate variables", i.e.,

representatons (section 4). It should be noted, however, that the refusal to expect that the individual sources
of information (or "cues") are separatcly analyzed is quite contrary to the viewpoint taken by this study.
Incidentally, Haber and Hershenson's deduction (above) that the visual processing is not modular simply does
not follow from the observation that the various cues are consistent. The visual system may make use of the
3-D information in an integrated fashion and also be modular: these two concepts are not mutually exclusive.

This raises a final point. Gibson postulated that our perception is "immediate". But the apparent
immediacy of visual perception -- the subjective ease of seeing -- which Gibson cites belies the complexity of
the underlying processing. Immediacy suggests rapid computation, but cannot be taken as evidence for
trivial, "direct registration". The complexity is recognized by attempting to formulate the problem that is
being solved, regardless of how effortlessly we seem to solve it. In that light, it appears doubtful that the
various sources of information (e.g., stereo disparity, motion, texture gradients, shading) may be made use of
in an "integrated fashion", as suggested. Deriving 3-1) structure from visual motion, stereopsis, shading, and
texture gradients are all fundamentally different tasks -- the computations are based on different principles

and therefore differ fundamentally.

2.2 Depth cue theory

The single image has been understood to be ambiguous, in that infinitely many 3-1) scenes could have
produced any given image. Hlelmholtz 119251 described the 3-1) interpretation of the image as a problem of
determining the radial distance from the viewer to the physical surface along every line of sight. Thinking of
the problem in terms of distance, Helmholtz proposed that the visual system interprets depth cues by
"unconscious inference" drawing on previous visual experiences (c.f. lliclmholU, 1925, Ittelson, 1960,
19681).' Therefore familiarity with the visual world is central to this theory.2 Helmholtz is explicit about this

in the following:

Knowing the size of an object, a human being, fir instance, we can estimete the
distance fJrom us by means of the visual angle subtendd. or what amou;is to the
sane thing. b) imeans of the size of the itndge on the retitla. ... Houses, trees, plants,
etc.. reay, be used fir the same puipose. but ther are less sati.f.cwtor because. not
being so regular in size, such objects are sometimes responsible fir bad mistakes
[Helmholtz, 1925, p. 283].

Seven depth cues in a single image are given in the following. These are commonly believed to be the sources

I. (rcgory 1197.31 draws an analogy between unconscious inference and the prK e of ienfific hypothesis firnnalion, wherein illusions
would be attributed to inappropriate a&ssunptions.
2. The emphasis nt the role of prior experierncc appears lo address a deelhpmenial isuc. lhc approach adopted b this study is to first

dcetmrnc the naurc of thc compulatlions perforned in surlice perception. wilhout concern 1or the nature-nurlurc issue.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2 I-,
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of 3-1) in single images.

1. Occlusion, if correctly interpreted, constrains the relative depth in the locality of
die occlusion. That is, the occluding edge is nearer than that which is occluded.
Occlusion has been studied primarily in relation to subjective contours (e.g.,
[Corcn, 1972; Stevens, 19761).

2. Retinal size, from which absolute distance can be inferred, given that the object
is recognizable and its actual size is known. However, retinal size has been found
to be only a weak source of distance information 1Rock & Mcl)ermott, 19641. The
relation between perceived physical size, retinal size, and perceived absolute
distance is sometimes called the size-distance invariance. Attempts to demonstrate
this invariance have produced equivocal results [Epstein & Landauer, 1969; Gogel,
19711.

3. Aerialperspective, a subtle cue known to artists that might also be used by the
visual system: the tendency for atmospheric haze to reduce contrast and to give a
blue tint to distant surfaces.' This effect cannot be of general importance to
surface perception, particularly in cases of nearby surfaces. And its contribution to
the impression of large distances is doubted by Gibson and Flock [19621.

4. The position of an object in the visualfield. Since we usually see objects that rest
on the ground. distance tends to vary monotonically with height in the visual field.
Evidence for our sensitivity to this has been found [Weinstein, 1957: Smith, 19581.
Also, the equidistance tendenc,: objects that are adjacent in the visual field tend to
appear at similar depth [Gogel, 19651.

5. Linear perspective, the projection of parallel lines on a surface into convergent
lines in an image; the notion of a vanishing point, and distortions of proximal
objects. Usually the effectiveness of perspective is measured by the subjective
slant of planar surfaces (e.g., [Atmneave & Frost, 19691), however Jernigan andEden 11976] have also demonstrated our ability to make accurate distance

judgements on the basis of the perspective projection of a cube.

6. Texture gradients, e.g., the systematic variation in projected texture (primarily
attributed to variations in distance). While usually quantified as the gradient of
texture density, other texture measures are proposed [Purdy, 19601.

7. Shading and shadows, illumination effects that cause surfaces to appear in relief.
These effects are well utilized by artists.

The last three cues are generally termed "depth cues" even though they will he shown to more naturally give
surface orientation. In fact, the hypothesis by Htelmholtz that the visual system recovers distance information
for all points in the image has lead to theoretical difficulties, especially with regard to the information carried
by shading and shadows. ihe addition of shading and shadows to a line drawing strongly enhances the
three-dimensionality, therefore, within the IHehholtz framework, these illumination effects are depth cues.
But shading is more directly useful as a source of information about surface orientation than about depth. In

fact, Ittelson recognized the difficulty in considering shading as a depth cue:

I )cpth can alo be siggested by brightne, s. where nearer means brighter. If this is found to be actually contrast, and not brightness.
then it could he parlialls subsumed by aerial perspective.
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It seems intuitively obvious, and consistent with the evidence. that illumination
color, and shading do serve as cues to apparent depth. lowever. the exact manner in
which they/unction seems to be qualitaiively diflereniftom all the other cues In all
other cases, there is some impingnent characteristic which. Jbr a given object, varies
in some predictable way with the distance 01'the object.... It seems most reasonable
to consider these cues as contributing to the integration of a complex situation. The
observer organizes the total experience in such a way as to make the best "sense" out
of it. that is, to make it correspond to the most highly probable condition [I ttelson,
1960, p. 1021.

Shading can be caused by variations in illumination, rcflectivity, or surface orientation. When shading is due

solely to variations in surface orientation (and not to illumination or rcflcctivity), the local surface orientation

may be determined [Horn, 1975]. With regard to cast shadows, their role in specifying surface shape has not

been examined (part Ill, section 3.3.1).

In contrast to the many depth cues, few cues specific to surface orientation have been proposed. Texture

gradients have been related to slant [Purdy, 19601, as has foreshortening (usually described in terms of the

height/width ratio of a simple form such as an ellipse [Nelson & Bartley, 1956; Flock, 1964a)). Also, the

perspective projections of rectangles as trapezoids have been studied for cues to slant [Freeman, 1966;

Braunstein & Payne, 1969; Olson, 19741. One of the most discussed slant cues is the image of a right trihedral

vertex, such as the corner of a cube. There is sufficient information preserved in its image to uniquely specify

the 3-D orientation of each of its face. In the general case of the corner projecting as a "Y" configuration, the

slant a of each face of the vertex is related to the opposite obtuse angles a and 11 by:

siney = (cota cotf) 1" 2.

The apparent three-dimensionality we see in drawings of objects with square corners (as commonly occur in
our "carpentered world") might be attributed, in part, to the above relation.

In summary, the 3-D interpretation of depth cues requires additional knowledge, which is usually

attributed to prior visual experiences. Depth cue theory expects some form of information processing (in

contrast to the direct perception proposed in Gibson's theory), but does not consider how information from

distinct depth cues might be integrated into a consistent "depth map". That issue is directly addressed by the

following theory.

2.3 Praegnanz theory

'Tlic Gestalt psychologists obscrved that we tend to choose visual interpretations that result in things appearing

to have minimum complexity. Kofflka [19351 then proposed the principle of Praegnanz, that "psychological

organization will always be as good as the prevailing conditions allow". So rather than have to explain this

tendency as a side effect of certain visual processes, it is made integral to a theory of vision:

A P1raegnanz principle assumes a teleological systemi (as Koffla [/1935] explicitly
recognized) in which simplicity has the status of a final cause, or goal-state it
assumes that the rules ,'perspective (or soine approximation thereto) are implicit in
am aalog mnediumi representing physical space, within which the representation of an
object imoves toward a stable state characterized by figural goodness or ininionun
complexity" lAtmneave & Frost, 1969].
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This theory, although addressing vision in general, concentrates on simple line drawings where the visual

interpretation may vary from simply two-dimensional atd lying parallel to the image plane to strongly

three-dimensional (c.f., [Attneave & Frost, 19691). fly studying thewe simple inag s, they hope It) uncover the

perceptual rules governing surface perception.

The Praegnanz theory directly addresses our ability to combine potentially contradictory information (a

point that Gibson dismisses as irrelevant to real situations Attncave. 1972 p. 2841). Rather than expect that

the visual system explicitly resolves this conflict (e.g., by disregarding the lesser reliable information), it is

proposed that all contributions meld together to reconstruct a 3-D model within a continuous "analog

medium". 2 That representation would preserve the information most essential for survival: the invariants

corresponding to the inherent properties of an object as well as its spatial relation to the viewer. The internal

representation and its implicit "rules of formation and transformation" 3 are presumed to be in some way

complementary to the corresponding external objects and to the "rules of projection and transformation in

three-dimensional space" [Shepard, 1979). Hence the Praegnanz theory, like Gibson's, emphasizes the

importance of extracting invariant properties, e.g., of size and shape from the variable and shifting patterns of

light. To be efficient in this task, the 3-D structure of an object is determined from its image by "rules of

formation" which reflect these invariant properties -- the visual system has evolved to take advantage of the

constraints imposed by the nature of physical objects and the image-forming process.

Attneave and Frost [19691 take issue with both Gibson and the depth cue theory concerning interpreting

geometrical configurations in the image:

A cue theory, as we understand it, would have to assume the neural equivalent of a
massive table listing correspondences between particular combinations of angles for
examples and particular slants With all due allowance for approximation,
interpolation. etc., this would require a formidable number of associations. [With
respect to Gibson: I We have. in fact. employed a "higher-order stiniulus variable"
[slant expressed by an trigonometric expression] ... as a rather successful basis for
predicting slant judgements To suppose that the visual system likewise solves this
equation to abstract such a variable strains one's credulity, the more so as one
considers in detail the operations involved in the transformiation [p. 3951.

Instead, the analysis is believed to be most economically implemented within the analog medium by

essentially pulling the image into three-dimensions where the particular 3-1) shape would be the result of the

simultaneous application of various rules of interpretation: an analogy is drawn to the static equilibrium

achieved in a mechanical structure to which various forces are applied. Presumably the visual system

converges towards a stable perceptual solution by maximizing some measure of simplicity with a

1. The distinction between "cue" and "rule" -- if any distinction may be made -- lies in the manner by which the information is utiliied.
Cues would be analyzed separately and explicitly: rules would he implicit in sonic proccss that imposes them in an integrated manner.
2. The notion of "analog" in this regard has been recognized to be problematic. Probably the intended distinction is that during a

perceptual proces such as rigid rotation or the determimation of a 3-) shape, the stored value% representing sonic perceptual quantity
(such as slant, perhaps) would pass through an effectively continuous range of values before settling on the final percept. This is
contrasted to a process by which the final value Ls arrived at directly.
3. "..g, to interpret angles as right angles. shapes as symmetrical. lines as traight and parallel, and to assunic that objects arc in "general

position". i.e. slight changes in viewpoint do not qualitatively change the image [Shepard, 19791. General p'osition has been recogniied
is important in studies of machine vision, e.g.. IWaltz. 19751, and arises in the analysis of surface contours in part Ill,
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"hill-climbing" procedure [Attneave. 1972]. This measure would include homogeneity of angles, lengths, and

surface orientations in the model, coplanarity or equidistance of components, simplicity of spatial

relationships, and goodness-of-match between the model and stored schemata [Attneave, 1972).

The analog medium would also serve object recognition by allowing the 3-D structure to be rigidly rotated
in order to bring the perceived structure from its initial spatial orientation (relative to the viewer) into some

orientation more useful for recognition. Experimental data showing the time to perform mental rotation to

vary linearly with the required angle of rotation has been interpreted as evidence for the visual system
performing continuous 3-1) transformations [Shepard & Metzler, 1971). Three-dimensional reconstructions

would be made from the image within this medium by the implicit application of "rules of formation". But a

set ofrules has yet to be proposed that would be sufficient to account for our perceptions in natural situations,

not simply those involving geometrically simple and symmetric objects. Furthermore, explicit geometrical
analysis of the image is regarded as infeasible by the Praegnanz theory. Instead, the transformation from

image to three dimensions is the implicit consequence of some process that seeks to minimize the complexity

of the percept. The theory even proposes a particular mechanism, hill climbing, to perform the minimization.
But a computation characterized as a minimization has other equivalent descriptions -- the choice of

description is primarily a matter of convenience [Ullman, 1979.

The central hypothesis of the Praegnanz theory is probably not minimization, but the feasibility of

determining 3-D shape directly from images in.general. By "directly" I mean computing a representation of

3-D shapes from a representation of the retinal image without the intermediate construction of a
representation of the visibl,: surfaces. This intermediate level is proposed by Marr 11977b] and Ma-r &

Nishihara 11978]. Briefly stated, there is too large a gap between image and object to be bridged by a single
"stage" of processing, as it were. That is because features of an image (intensity edges and gradients of
intensity, for instance) are not easily related to volumetric, or object, features -- in fact, the whole notion of
"object" is difficult to define in terms of its image [Marr, 1977b]. On the other hand, a surface representation

is feasibly constructed on the basis of image information since discontinuities and gradients in the image are
related to surface features (physical edges, and surface curvature). The sui-face description would then serve

as a natural basis for constructing a volumetric description.

The previous discussions of Gibson, depth cues, and Praegnanz have shown the prominent schools of

thought on surface perception. In the following section I shall briefly review the computational approach

introduced by Marr.

4
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3. COMPUTATIONAL ASPECTS OF VISION

From one point of view, vision provides the organism with useful descriptions of the visible environment

[Marr, 1976; Marr & Poggio. 1977: Marr, 1977b]. Early in the course of visual processing the image itself is

described in terms of edges, blobs and other intensity variations [Marr, 1976: Marr & Hildrcth, 19791.

Subsequently the visible surfaces in the scene are described in terms of distance, surface orientation, and

apparent physical edges -- using information from the image description [Marr, 1977b]. And later 3-D shapes

are described in terms of volumetric primitives -- using information from the surface description [Mart &
Nishihara, 19781.

We may then focus on either of two complementary aspects of vision: understanding the descriptions

themselves (e.g., what are the primitives of the description?) and understanding the processes that construct
the descriptions.

Visual processes are most feasibly understood when approached at several levels of abstraction [Mar" &

Poggio, 19771. At first, a process is understood as an abstract computation -- as a method for applying a set of

constraints to a problem. Basic understanding of a visual process comes from recognizing the computational

problem that must be solved and determining the set of constraints that allow its solution. More specific

understanding of the process comes from determining the algorithm that incorporates those constraints. At

the level of algorithm, one addresses such aspects as intermediate constructs (e.g., place tokens and virtual

lines [Marr, 1976; Stevens, 1978]). and computational operations that are biologically feasible [Ullman, 1979.
Finally, to understand the actual mechanisms that implement the algorithm involves neurophysiology.

Since much of this report concerns constraints, it is important to discuss some basic issues concerning

them.

3.1 A discussion of constraints

The ambiguity of the image requires that its interpretation be additionally constrained. Stereopsis, motion,
shape-from-shading, shape-from-texture, and other processes must incorporate assumptions that further
constrain their respective problems. But actually, the degree of ambiguity facing a given visual process

depends on when it is tackled by the visual system. For example, the false-targcts ambiguity in stereopsis does

not exist if stercopsis is deferred until after the objects in each of the two images have been recognized (apple

in the left image matches apple in right image, etc.). Similarly, motion correspondence would be easier if each

image were analyzed to the point of recognized objects prior to determining the correspondence between

frames (the rabbit in the first frame matches the rabbit in the second frame). However Julesz [19711 has

shown that stereopsis precedes the perception of objects, and Ternus 119261 demonstrated that motion

correspondence can be established between simple elements (e.g., edges and points) in successive images

without requiring objects recognition.

With regard to texture and surface contours, when arc their analyses attempted? In determining that, we

fix the sort of information that is available to solve the associated information processing problems -- and

thereby determine the sort of constraints that must be applied. In particular, is surface shape described after

objects are recognized? If deferred until after objects are recognized then knowledge of the 3-1) shape could
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be brought to bear on interpreting the surface shape from a particular view of that object. On the other hand,

if performed prior to recognition, the only information that is available is the geometry of the texture and
contours. What, in fact, is the earlies point at which the human visual system can feasibly solve this problem?

First, we know that some aspects of surface perception do not require object recognition. Random dot

stereograms, texture gradients, and various abstract art provide example in which surfaces are perceived
independent of any understanding of what object might be portrayed. Furthermore, it is infeasible to

attempt object recognition without having previously analyzed the image to the point of describing the visible

surfaces, in general [Marr, 1977b]. That is to say, surfaces are feasibly described prior to object recognition (as

easily demonstrated), and object recognition without previously describing their visible surfaces is probably

infeasible in general.

But do all processes of surface perception strictly precede object recognition? That would imply that
recognition could not effect the perceived surface shape. This is not the case, as has been demonstrated by the

Gestalt completion tests [Street, 193 1. Object recognition does contribute to surface perception, however the
relative importance of this contribution is not known.

What sort of constraint is provided us for solving the surface shape from texture and surface contours?

Primarily they will be geometrical. To illustrate, consider planarily" i.e., restricting a 3-D curve which lies

across a surface to be planar. The shape of the curve is more feasibly deduced from its projection in the image
if it is planar than if it has torsion (twists in space). Hence planarity may be considered as a constraint. But is

planarity a reasonable property to assume? How often are curves on surfaces (such as cracks, scratches,

pigmentation markings) actually planar? Probably few cu:ves are globally planar, but many can be
reasonably approximated as planar for sizeable portions of their length. We might assume that segments of a

curve are planar (but certain criteria are needed to delimit the extent of a curve that may be treated as planar).
It follows that constraints that need be valid only locally are more useful to the visual system, as those have

a higher likelihood of be valid. A further advantage for local contraint is apparent when actual algorithms are

considered that would apply the constraint: If a local constraint is sufficient to solve the problem, then the
algorithm can be local -- the computation may be performed wholly on the basis of input from some

prescribed region of the image.1 Local algorithms provide an advantage to a biological implementation, both

in terms of actual neural connectivity and simplicity of design [Ullman, 1979. Finally, it would be
advantageous to use the results of local surface analysis to constrain subsequent global analysis.

But local constraints whose validity cannot be verified might result in global inconsistency. Do we check
for global consistency? The persistent bafflement that we experience in the artwork of M.C. Fscher suggests

that global consistency testing is not incorporated in our visual system.
Nonetheless, visual analysis based on constraints that are not invariably valid must deal with potentially

inconsistent information. The inconsistency might be of the sort just mentioned (i.e., a locally consistent but

1. That region need no( be fixed, e.g.. in terms of visual angle: The region of visual input may be determined by somie local measures in
4 the image. An example of this is given by the description of local parallclism in dot pallerns JStevens, 19781. he neighborhood size is

determined by the local dot dcnsii. so that a relatively constant number or dots is included. lbc computation is therefore scale
independent (over at least an order or magnitude range of dot density).
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globally impossible 3-D configuration) or inconsistency between the independent solutions of either surface

orientation or distance provided by independent proceses.

This study will not consider the problem of integrating multiple sources of information. The

computational problems that arise are probably best studied after the processes that deliver the information

are better understood.

One final introductory point regarding constraints should be made: While it is important to understand

the particular constraints that are brought to bear in solving a given problem in vision, understanding the

constraints alone does not constitute a theory. It is also necessary to understand how the constraints are

applied to the visual input -- i.e., the computational method must be determined. This study, however, only

attempts to understand some of the constraints themselves.

3.2 Constraints or invariants?

There is widespread agreement that the visual system must utilize "invariants" in the image, where the term

"invariant" is intended in its mathematical sense, i.e., when some property or relation is unchanged by a given

transformation (see e.g., [Gibson, 1971; Shepard, 19791). The use of the term stems from the expectation that,

in order to "recover" three dimensions, there must be 3-D information preserved by the projection

transformation that leads from three to two dimensions. How do these invariants differ from the constraints

that I just discussed? This will be examined in the following.

To postulate that the visual system is sensitive to invariant relations is appealing, however one point will be

stressed in the following: few properties in the 3-D scene are in fact invariant over the perspective projection

onto the image. Of those that are, few have the necessary feature of having an invariant inverse. That is to

say, the presence of the relation or property in the image does not necessarily imply the corresponding scene

property. For instance, simply because two edges are parallel in the image, their 3-D counterparts needn't be

parallel.

We shall see that there is unlikely a sufficient set of invariants with invariant inverses on which to base

rules for vision. On the other hand, there are geometrical relations in the image that do have this useful

feature, but not invariably. The following is not intended to pan the term "invariant", but to emphasize the

necessity for assuming physical properties in order to take advantage of the constraint afforded by these

image properties and relations that generally, but not invariably, hold.

First of all, few spatial relations and properties are invariant over projection. Angles and lengths are not

preserved, therefore the important properties of perpendicularity, size, and extrema of length arc not

invariant. Neither are points of maximum or minimum curvature on a curve. Due to obscuration, neither the

continuity of a curve and nor its closure are necessarily preserved. Some invariant properties and relations

are:

collinearily: If two physical edges are exactly collinear, they will appear so in the
image. ('liis forms the basis f)r the Gestalt rule of "goo)d continuation" across an
obscuration.)
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cross ratio: If A, It, C, and 1) are four distinct collincar 3-1) points, then the
following ratio is preserved in any perspective projection: the quotient of the
ratio in which C divides All and the ratio in which 1) divides AB.

inflection points on platnar cunes: An inflection point (ofcurvaturc) along a planar
curve is preserved in the orthographic image of that curve.

parallelism: Parallel 3-D edges appear (in orthographic projection only) as parallel
edges in the image.

proximity: If two 3-D points are proximate, their projections will be proximate in
the image.

smoothness: If a physical edge is smooth, its projection will be smooth, when
visible.

spatial order. The order of places along a straight line in 3-D is preserved in the
image of the places along the image of the line.

straightness: If a 3-D edge is straight, it will appear so in the image.

For most of the above properties and reltions their inverse is not invariant, i.e., the presence of the

property in the image does not guarantee the presence of that property in 3-D. Consider the invariant

relation of proximity: if two 3-D points are proximate, they invariably appear so in the image. The inverse is

not guaranteed -- two adjacent points in an image do not always correspond to adjacent points in 3-D.1 The

fact that a given relation or property is invariant does not guarantee that it would be useful for visual

processing: the inverse also must be invariant or at least generally 2 valid: invariance alone is not sufficient.

So let us turn the problem around and ask what properties or relations, when present in an image, are

necessarily present in the 3-D scene. Consider first the invariances whose inverses are always valid:

cross ratio, inflection points on planar curves, and spatial order.

To these we add the invariances for which the inverses are often valid:

collinearity parallelism. proximity, smoothness, and straightness.

To those we add geometrical properties that, when present in the image, imply the corresponding 3-D

property. But note that these properties are not invariant over projection.

perpendicularity: If two image contours are perpendicular, they are probably r
perpendicular in three dimensions.

1. 1lowever. the inverse is often true. as may be demonstrated by %electing a cloely-spaced pair of points at random on a photograph of
a 3-) Dscnc. The points usually correspond to physical locations that are nearby in %pace. 'Ibis is because, by and large. the world is
comprised of qiiooth surfaces. Ibis relation, phased in terms of continuity. foirms one of the basic constraints on stcreopsis [Manr &
Poggio. 1976.

2. This is the issue of"ecological validity" discussed by Gibson. Brunswick. and others (c.f., [Gibson. 1950a: Postman & Tolman, 1959]).
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occlusion: If the termination of a contour lies along another contour, that
termination might be due to occlusion, and, if so, implies an ordinal relation
between the distances to the two corresponding physical edges.

regularity: Various measures of regularity (e.g., regularity of spacing, density,
length, or size) when present in the image reflect 3-D regularity and do not result
from a coincidental viewpoint of an irregular surface. Regularity will be discussed
further in part II.

symmetry: If a symmetrical configuration is present in the image, it is almost
always due to some symmetrical 3-D configuration, and not coincidental.
Symmetry will be discussed further in part Ill.

The above properties, while useful to the visual system as sources of 3-D information, are not strictly

invariant.

The basic point regarding these relations is that, to be applied to vision, there is necessarily an assumption

that their inverses are invariant. Consider the parallelism relation. While parallel edges in the image do not

invariably correspond to parallel 3-D edges, in order for the parallelism to be misleading (i.e, for the 3-D

edges to not be parallel) there must be a particular arrangement between the viewer and the 3-D edges. If the

a priori probability is low for this to occur, then image parallelism would be useful for inferring 3-D structure.

There remains the problem of what to do when the situation is misleading, however. With independent

information which reveals this fact (e.g., from stereopsis or motion) the analysis might be recognized as

incorrect. Clearly, without independent information, the analysis would be incorrect and a "visual illusion"

would resulL

3.3 One representation, many contributing processes

We will be examining the constraints on the analysis of texture and of surface contours, but in so doing, we

implicitly assume that these analyzes are distinct. Is there a single perceptual process, or is the percept the

consequence of relatively independent contributions that are combined in some manner? Introspection has

often suggested the former (see section 2.1); computational arguments now suggest the latter. This question

will be discussed a bit further, since it is important to the rest of the work.

If one introspects on the percept, i.e., the three-dimensionality, there is a unity or homogeneity that some

investigators find difficult to explain by separately analyzed cues (e.g., Haber, see section 2.1). Consider the

following progression: observe a scene binocularly as you walk about. Then stand still and stare. The absence

of motion subtly diminishes the three-dimensionality. Then close one eye (no steropsis) and the sense of

depth is further diminished. Next, substitute a photograph taken from the same vantage point (no

accommodation), then an architectural rendering (contours, shading, but no texture), then finally a line

drawning (no shading). Observe that each successive step weakens the three-dimensionality. This has been

interpreted as evidence for a single monolithic process whose performance is progressively degraded under

these "reduction conditions".

The subjective homogeneity may also be explained by there being a common surface representation that is

developed by relatively independent perceptual processes. The 3-1) impression common to the above

situations stems from the visual system combining the information from various sources (stcreopsis, texture

. r - I .. . ... . . . 2
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gradients, etc.) into a common representation, from which subsequent analysis and spatial judgments are

made. But why should each source be separately processed? There are computational arguments for

expecting a modular design [Marr, 19761.

A natural, modular decomposition of visual processing is suggested by the distinct computational problems

that must be solved. This is because the sources of information are fundamentally distinct: for instance,

occlusion is very different from shading both in terms of the nature of the information and the assumptions

that must be made to utilize that information. It is reasonable to treat occlusion as distinct from shading and

to expect that any implementation, biological or otherwise, will reflect that distinction -- there would be no

advantage in having interactions between these processes except after their computations are performed and

the results are to be combined in some consistent manner.

LL
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4. REPRESENTING VISIBLE SURFACES

This section reviews the framework for describing visible surfaces and 3-I) shapes proposed by Marr and

Nishihara [1978] and gives a computational argument for a specific form in which to represent surface

orientation.

4.1 The 2 1/2-D Sketch

Ultimately, the visual system constructs descriptions of 3-D shapes for such purposes as recognition and
manipulation. Some of these descriptions are object-centered, i.e., independent of the viewpoint. But an

earlier -- and probably prerequisite -- visual description is of the shape and arrangement of surfaces relative to

the viewer. This description is viewer-centered. Surfaces are described in terms of surface orientation,

distance, and the contours along which surface orientation or distance are discontinuous. Physical boundaries

of surfaces are made explicit, but not necessarily those of 3-D objects (whose boundaries are not so easily

defined). Hence two distinct representations are proposed: the surface description, called the 2 I/-D Sketch1

and the 3-D shape description, called the 3-D Model [Marr & Nishihara, 1978].

The 2 Ii/l) Sketch is envisioned as a field of thousands of individual primitive descriptors, each describing
the surface orientation or distance at the associated point in the visual field. It would allow in formation about

surfaces derived from stereopsis. motion, shading, and other analyses to be integrated and maintained in a

consistent manner. 'Ihe information in the sketch would then be accessible to later processes, e.g., those that

derive volumetric des-.riptions such as the 3-1) Model.

Each representation should be of a form which is easily computed by early visual processes, and also of a

form that is useful for the later processes that access the reprcsentation. The 1/2-I) Sketch describes surfaces
locally and relative to the given viewpoint -- this is a form which is naturally delivered from the image and

which may be directly interpreted by subsequent processes. On the other hand, the 3-D Model describes 3-I)

shapes relative to their prominent axes of elongation (for instance) hence largely independent of viewpoint --

this is a form which is useful for recognition.
We now focus on representing visible surfaces within the 2 /2-1) Sketch. This representation probably

makes both distance and surface orientation explicit. This would serve three purposes:

Fach type of information, being explicit, would be immediately available for
efficient use by later visual processes.

It makes feasible the independent acquisition of each type of information by
processes which, by their nature, provide information in one type or the other.

At times information of one type may be more precisely known than the other.
Since they would be represented independently, the more precise information
would not be degraded by the less precise.

I So naned as it repreent s 3-D inforinal tn. but onl, of the 'urfaces in the scene that arc visible to the viewer.
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Surface orientation and distance arc roughly equivalcnt in the following sense: Surface orientation is

computable from distance by taking the gradient of distance: the relative distance of two points may be

computed by integrating surface orientation along a path connecting those points. The visual system

probably Likes advantage of this equivalence and explicitly computes surface orientation from distance in one

direction, and distance from surface orientation in the other.
We may illustrate one direction by means of stereopsis, which provides distance information in the form of

stereo disparity. But we also perceive surface orientation in the random-dot stereogram. It seems most

reasonable to expect that the apparent surface orientation stems from analyzing the variations in perceived

depth, e.g., by the gradient of the depth map. Another example of our deriving surface orientation from

distance is given by figure 1. In this figure occlusion is the only source of 3-D information -- hence most

likely a depth map is computed first, and from this we subsequently infer slant. Note that the appirent slant
varies with the degree to which successive rows are obsured -- the slant varies according to whether the figure

is interpreted as three coins lying on a table, three coins standing on end, or as three billiard balls. In each

case the slant is a consequence of the depth interpretation.

In the other direction, distance is derived from surface orientation. Figure 2, which is borrowed from part

III of this report, suggests an undulating surface seen in orthographic projection. One may argue that surface

orientation is more directly analyzable than distance in this case (part IlI, section 1.1). On this basis, I suggest

that the visual system first computes a surface orientation description from the contours, and subsequently

computes a depth map from that description. The following psychological observation also supports this

clam- the impre. sion of depth is less definite than the impression of surface orientation. If figure 2 were

analyzed in terms of distance, one would then have to explain how surface orientation would be computed
from distance with better precision in orientation than in distance. Finally, the "depth reversals" of the

familiar Necker cube (see [Gregory, 1970]) is another example of distance being derived from surface

orientation, for the cube is usually drawn in orthographic projection. There is only surface orientation

information preserved in the orthographic projection of the cube.
In light of these examples of our deriving distance from surface orientation, and vice versa, it seems likely

that representations of both surface orientation and distance exist and that they are probably coupled. We

now will turn to the problem of representing surface orientation.

4.2 Surface orientatioi

The most direct approach for expressing surface orientation is in terms of the normal to the surface at a point.

However there are several ways to describe the surface normal, as will be demonstrated, so criteria will be

introduced for judging the likelihood that a given form of surface orientation representation is incorporated in

the human visual system. First, we will consider various natural forms for representing surface orientation,

then discuss one form that meets these criteria.

4.2.1 Slant, tilt, and gradient space

Since the description of local surface orientation will be relative to a particular line of sight. it is sufficient to

treat the optical geometry locally as a spherical projection (the radius at each point on the sphere defines a

I I 4
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iguire 1. Sti.ce slant can be infekrred froin disuince infornmauion: TIhe only sotircL of' distance infobrmauion
Shove is M C IIsIt m1. for- (lie ill ostra t ion is in ortlhograph ic proiject ion (ihe circtles ire equal-si/ed). Thew circular

ligures, appear to lie on sonmc suppol-ing plane. the slantl o(' Which varies ats the figurcs are imtrprcted its three
coins lyinig oni a table, three coins standing on end, or ats three billiard balls. TIhe slant is at function of die
degree to which sticcessive figuires are occluded. and the radial distance assumed to separate thc Figures.
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Figure 2. D~istance can bc inlicrrcd from surface orientation: lbc undulating surface is suggeSted simply by
translated sine waves. In thc aibsence of oCClUSio11 and other dcpth cucs, dhc visual systcem probably interprets
the local surface orientation, and from this derives a sense or dcpthi. Note thalt just as the local surface
oricntation is amibiguous in orthographic projection, die depth may be seen to reverse (especially along the
diagonal strip where thc contours are closely spaced).
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particular line of sight). The image in the immediate vicinity of a point on the sphere would project normally

onto the tangent plane at that point. Since tie image plane is always perpendicular to the line of sight, the

projection is locally orthographic. It is important to recognize that the "image plane" notion is an

approximation which is valid only locally.

Now we impose a local Cartesian coordinate system on the image plane in order to address nearby image

points. We will label the axes of the local system as x and y, remembering that they measure angular

displacements about a given image point. Then distance z along the line of sight to points on a surface is

given by z = f(x, y). The surface normal N can be expressed as grad f:

N = f.i + fyj-k

where fi and fy are the first partial derivatives with respect to x and y. The orthographic projection of N is the

two-dimensional vector n:

n = fii + fyj.

Local surface orientation therefore has two degrees of freedom, and the pair (fa, fy) would constitute one form

of description. That is, surface orientation can be expressed by the rate of change of radial distance in two

perpendicular image directions (but the orientation of that coordinate system is arbitrary).

The rate of change of radial distance in an arbitrary image orientation a is given by the directional

derivative in the direction a, equivalently the dot product of the unit radial vector of that direction and grad f:

dz/dr = fG cos a + fy sin a. (1)

The image orientation in which this rate is maximized (actually maximum in one direction and minimum in

the opposite direction) is given by differentiating (I) with respc\t to a and equating the result to zero:

-f4 sin a + fy cos a = 0
which gives _a = tan -' (f,/fx) = r.

This orientation T indicates the orientation in which radial distance to the surface changes most rapidly. That

orientation will be termed tilt, where 0 < r < w. Figure 3 illustrates surface tilt by an ellipse, the familiar

image of a circular disk in orthographic projection. The orientation of the minor axis coincides with the tilt

orientation. Note that specifying only the orientation (0 < T < 7r) and not the direction (0 < 7 < 2w) of

surface tilt allows two surface orientations that differ by a reflection about the image plane. This is precisely

the amount to which surface orientation can be specified in orthographic projection in general (section 4.2.3).

The slant angle, measured between the line of sight and the normal, is given by:

a = tan- l (fi2 + fy2)1/2.

In short, tilt specifies "which way" and slant specifies "how much".

Tihe tilt orientation was seen to correspond to the orientation of the gradient of distance from the viewer.

lhe orientation in which the distance is locally constant is given by setting (1) to zero, which gives

a = tan- (f,/fi) + w/2

that is,
a = r + v/2.

'Ibus distance to nearby surface points varies most rapidly in the tilt orientation and is locally constant along

the perpendicular orientation. Hence a local Cartesian coordinate system with the y-axis aligned with r

A_ I
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q

tan/

- - -- -- --- -- -- ------- - -

Figure 3. "lc two degrees of freedom of local surface orientation can be described as the coordinates of a
point in gradient space, cithcr as Cartesian coordinates (pq) or as polar coordinates (tanU, T). "lhe angle a
between the line of regard is termed the angle of surface slant, and the orientation r is termed surface fili. If r
specifies only the orientation (0 < T < v) and not the particular direction of surface tilt, then the surface
orientation is determined only up to a reversal about the image plane. This ambiguity matches the degree to
which surtace orientation can bc determined from orthographic projection. Tl'he slant ambiguity is
demonstrated above, with the two interpretations indicated with 3-1) arrows. To observe the two
interpretations, alternately cover one of the arrows.
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provides a convenient way for describing variations in distance in the vicinity of a point on a surface. This

will have application in the analysis of texture gradients (part 1i).

It is common to refer to f, and fy as p and q. Then the pair (pq) may be thought of as the Cartesian

coordinates of a point on a plane called gradient space.1 The surface orientation at any point on an smooth

surface maps to some point in gradient space. The origin of gradient space corresponds to a surface is parallel

to the image plane (zero slant angle).

A natural alternative to addressing a point in Cartesian coordinates is to use polar coordinates. The
straightforward conversion gives us (tana,r) where

= tan-' (q/p) (2)

tano = (p2 + q)1/2.
From this we see that the two degrees of freedom of surface orientation can be expressed as either (p,q) or

(tanaq,). However, the representation of surfaces whose slant angle approaches v/2 would require

approximation with both of these forms. (All surface orientations with slant of v/2 correspond in gradient

space to points infinitely far from the origin.) This suggests a second polar form for the primitive descriptor

of surface orientation: the pair (ai) where the slant angle, and not its tangent is used. This form will be

referred to as slant-tilt. Attneave [19721 proposes a third polar form for representing local surface orientation

in terms of small ellipses whose orientation corresponds to surface tilt r, and whose ratio of minor to major

axes corresponds to the cosine of the slant angle. That form would be equivalent to (cosayr).

To summarize, the two degrees of freedom of surface orientation are naturally described in Cartesian form

as (pq), or in various polar forms:

(tano,r)

(coso,').
We now consider some criteria for judging the likelihood that a given form would be useful for describing

surface orientation within the 2 1/2-D sketch. I will use these criteria to argue that a polar form of surface

orientation is more likely incorporated in the human visual system than a Cartesian form. But the criteria

distinguish primarily between Cartesian and polar forms. They do not distinguish among the various polar

forms just listed. 'Me representation of slant was studied experimentally, and it is concluded that slant is

probably represented directly in terms of slant angle. 'lhat is to say, the representation is probably equivalent

to (o,').

4.2.2 Criteria for a representation of surface orientation

The criteria are given in the following, and discussed subsequently. The first two are the most basic:

I. Representing kal urface orientation by the pair (p.q) has been uscrul in machine vision (c.f [I luffmian. 1971: Mackworth, 1973:
I lorn. 1975: Woodlham. 19771), (iradicnt space is convenient for applying constraints imposed by object geomctr and by reflctance
propcrtc% A typical use of the space is to represent the allowable range of surface orientations that arc consistent with a given
illumination sitnaion When the surface reflectance properties and the positon of the light surce are known, then the locus of possible
surface oricnltatons that might gisc n.se to a particular image intensity can be neall) characterioed as a curve in gradient space.
SuMcSivC application of constraints ma. further restrict the solution until a %mall are or perhaps a point in gradient space remains
[Woodham. 19771.
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CI: Is residual ambiguity implicit in this representation? That is, does the
ambiguity in the primitive descriptor of the reprcscntation reflect the extent to
which that information can be known locally?

C2: Is the form compatable with that in which the information can be inferred
from the image? In particular, can each component of the primitive descriptor be
computed separately?

While it is parsimonious to store information in the same form as it is computed, that form of representation

must also be useful to subsequent processes that access the information. So:

C3: Are discontinuities in surface orientation efficiently derived from this form?

C4: Can distance be computed from this form efficiently?

Finally, two phenomena are associated with surface perception that probably bear on the form of the

representation of surface orientation:

C5: There is often a disparity in precision between surface slant and tilt
judgements. Disregarding the cause of this disparity, does the given form of
representation allow slant and tilt to be represented with differing precision?

C6: Can reversals in surface orientation that are associated with depth reversals be
attributed to this form of representation?

4.2.3 Residual ambiguity and reversals (criteria Cl and C6)

Surface orientation can be determined in orthographic projection only up to a reflection about the image

plane, which I shall term a slant reversal.1 The ambiguity is illustrated in figure 3. How does the visual

system handle this ambiguity? One possiblity is that, in fact, the ambiguity does not get carried beyond the

analysis of surface orientation. That is to say, the ambiguity is resolved immediately by some means, and so at

any one instant only one of the two slant interpretations is taken. The other possibility is that surface

orientation is first determined only up to a slant reflection, and that the ambiguity is preserved until it can

later be resolved by some subsequent process. This alternative seems more feasible, and is consonant with the

hypothesis that the visual system follows the principle of least commitment [Marr, 1976b].

A natural means for preserving the slant ambiguity is by representing surface orientation in a polar form

where T specifies only tilt orientation (0 < T < 1r) and not tilt direction (0 < T < 27). Hence surface

orientation is made explicit only up up to a slant reflection. Subjective depth reversals may then be explained

in terms of the slant ambiguity in the surface orientation representation, not to reversals in represented depth,

per se. )istance may be computed up to a constant from surface orientation, but surface orientation can be

determined in orthographic projection only tp to a slant reversal. Therefore distance can be computed from

this information only up to a sign.

In contrast, a Cartesian form is not as naturally suited to the task of keeping slant ambiguity implicit. The

I Figures projected in perspective also rcverse, whereupon the figure looks distorted [Gregory. 1970.

'4' 1
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form (p, q) overspecifics the surface orientation, but if we take the absolute values of each component (Ipl, Iq)
now there is four-way ambiguity. Since reversals in slant are constrained to either quadrants 1 and 3 or

quadrants 2 and 4; one more bit of information is needcd which specifies which pair of quadrants are

involved. A Cartesian form can be made to specify slant only up to a reversal, but only explicitly.

4.2.4 Computing the primitive descriptor (Criteria C2 and C5)

Criterion C2 states that the form of the representation should match the form in which the information can be

naturally computed. The polar form of representation allows a decomposition of the problem of computing

surface orientation into two distinct subproblems: determining the orientation in which the surface tilts, and

the amount of slant. This decomposition is valuable, for different techniques exist for determining these two

quantities. Also, the computation would be robust, for cues to tilt might be present even when the magnitude

of slant cnnot be determined to any precision. On the other hand, the Cartesian form does not as readily

decompose into distinct computations of its two components. In short, the problem of computing surface

orientation is naturally solved by determining "which way" and "how much" and a polar form is better suited

to that task.

Criterion CS addresses the problem of accounting for the difference in precision with which two aspects of

local surface orientation are judged, the slant, or how much the surface orientation differs from the image

plane, and tilt, the orientation in which the surface normal faces. Slant is often significantly underestimated

("regression to the frontal plane") in monocular and binocular presentation of either perspective and

orthographic projections.' Furthermore, the perceived slant is strongly affected by the length of presentation

time [Smith, 19651. Apparent slant may even vanish under prolonged observation (this may be observed in

figure 2). In marked contrast, judgements of surface tilt are usually more precise, stable, and accurate

(appendix A). So although the slant of a surface may or may not be known with precision, the orientation in

which it is slanted is usually obvious.

Discussion of the imprecision in judging slant ("regression to the frontal plane", large variance, or

U-shaped effect) has usually centered on explaining the effect, e.g., as a consequence o;f a competing tendency

to perceive the surface as lying in the frontal plane [Attneave & Frost, 1969]. Of importance to this study is

not the cause of the imprecision, but the fact that the imprecision in slant, when present, is not necessarily

accompanied with imprecision in tilt.

A polar form would allow the independent computation of tilt and slant. In part 11, for instance, we will

discuss methods for performing these two computations from texture. The methods for computing tilt arc

fundamentally different than those for computing slant, and therefore are expected to provide solutions with

differing precision. The differing precision is preserved in polar form.

One might argue that surface orientation is. in fact, represented in Cartesian form and therfore the

I. For evidence of underestimation of slant judgments from texture gradients sc [Gibson. 1950h: Clark. Smith. & Rabe. 1956: Bergman
& Gibson, 1959: Purdy. I196: Kraft & Winnick. 19071: in the c.% of rccianglcs projected as trapc/oids see (I.ock. 1%5: I-lock. et. ai.
1967: Kaiser. 1967: Olson. 1974) Undercsnnialion of slant in orthographic projectons is demonstrated in [Atneave & Frost. 1%9:
Atineavc. 19721. Ihc underestimation may occur even %ith binocular prc.mntation (Smith. 1965: Kaiser. 1907: Youngs. 1976. (Note that
under excellent binocular viewing conditions the undcrcstimaltion is not significant. as shown in appendix I and [Olson. 1974].)

•_"_.... .. _________ __•__,_,_, ____ _ ._ " ' 
- '
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experimental design unnaturally imposes slant and tilt judgments on that representation.1 By this argument,
the diffcring precision in slant and tilt may bc an artifact of the experimcnt. However this argument does not
explain the following. The variance and underestimation in slant is dcpendcnt on the quality of the visual
input: With orthographic projection, the slant judgments are poor and variable while the tilt judgments are
more accurate and less variable. And yet, under excellent binocular viewing, both slant and tilt can be judged
with precision and accuracy. A Cartesian form is not well suited to the task of simultaneously representing

surface orientation known to precision in tilt but imprecisely in slant. But with a polar form, imprecise slant
can be represented simultaneously with precise tilL

4.2.5 Discontinuities (Criterion C3)
A representation of surface orientation would be useful for detecting discontinuities in surface orientation.
Some evidence for surface orientation discontinuities are readily extracted by local operators designed
specifically to operate on a symbolic description of the image (such as the Primal Sketch [Marr, 1976b]). For
example, a discontinuity in tangent along a contour is evidence for a discontinuity in surface orientation, since

that would be the most common cause for a contour to remain continuous but suddenly change direction
(especially when several such discontinuities align [Marr. personal communication]).

Other evidence for surface orientation discontinuities are not so directly evident in the image, but may be
detected after local surface orientation is computed (figure 5). As these discontinutities are more subtle, it
would be economical to defer their detection until the 2 lA-D Sketch rather than attempt their detection
directly from the ima'ze.

Consider the situation where surface orientation is known more precisely in tilt than in slant. This
introduces the point of Criterion C3. The detection of a discontinuity would then decompose into two
subproblems: finding discontinuities in tilt independent of those in slant. Then the computation becomes
straightforward: rather than compute some difference measure that involves both components of surface
orientation, the discontinuity would be detected by independent comparisons of slant components and of tilt
components. Then a small difference in the tilt components would be significant evidence if the tilt were

known with precision.

4.2.6 Distance front surface orientation (Criterion C4)
Distance can be computed from surface orientation, as mentioned. Since surface orientation is the derivative

of distance, the difference in radial distance between two points on a smooth surface can be computed up to a
constant by integrating surface orientation along a path between the two image points. Ihis computation is
straightforward when surface orientation is represented by the Cartesian coordinates (p,q) of Gradient space,
for those coordinates are the partial derivatives of radial distance with respect to the image axes.

I. If. ,as is postulated, the visual system represcnis surface orientation in a polar form, it would be unnatural to judging the components
of urlace orietilation projected along two orthogonal image axes (e.g., horizontal and vertical).
2. The detection of discontinitiis in surface tilt then closely resemblcs the problem of detecting discontinuities in paraliclin in an

image [Stevens. 19781. A texture consisting of locally parallel edges can be represented by a field of short oriented clements(iirtual lines)
which are everywhere locally orieited in the same manner. Analogously. the 2 1/2-1) Sketch of a smooth ,urlicc would have locally
parallel tilt components.

WWI
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Figure 4. A discontinuity in surface orientat on is usually accompanied by a contrast edge in thc image, butnot ncess,.ily. Other evidence for a discontinuity in surfacc orientation would be an abrupt change in theslope of continuous image contours. 'l'h discontinuity in tangent is strong evidcnce, sincc that would be themost common cause for a contour to remain continuous but suddenly change direction, especially whensc'cral such discontinuitics align. Suich evidence can be detected by simple local operators which only signalthc prcscncc of a discontinuity without solving the surface orientation on either side of the discontinuity.
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Figure 5. Some discontinuities in surface orientation are probably best detected aflter the local surface
orientation is solved. In the above example, the discontinuity is not evidenced by contrast edges or
discontinuiies ill tangent to contours, but only by a local measure of texture whose value is proportional to
the slant (discussed in part I1). 'The detection of'discontinuities would be performed economically if deferred
until it representation of the local surface orientation is developed. Then disconinuiies could be found by
examining the representation regardlcss of the source of the inlbrnnation (e.g.. s(ereopsis, motion. texture
gradients). (Note that this and stthseqtCuet figures depicting texture are drawn somewhat schematically with
ellipses. The discontinuity effect occurs with more natural textures, its well.)
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The discussion thus far has favored a polar form for rcprcsenting local surface orientation, hence it is

important to ask whether distance is feasibly computed from a polar form. 'nhat computation can be

performed by a summation along the path between the two points in qucstion. If the orientation of the path

between those points is 0, and the surface orientation of a nearby point along that path is (0,T), then the

contribution to the summation at that point would be

I tan [COS(-G) I.

Since surface orientation can be known only up to a slant reversal in orthographic projection, scaled

distance can be computed only up to a sign. Hence the computation of distance information does not have to

wait until the surface orientation ambiguity is resolved -- the distance can be computed up to a sign, i.e., to the

same specificity to which surface orientation can be known locally. Then other knowledge can either specify

the sign and simultaneously the slant direction is resolved, or the slant direction can be determined hence the

direction in which distance increases is resolved.

4.2.7 Representing slant

The form in which slant is represented has not been discussed. The range of slants from 0 to 90 degrees is

assumed to be represented within the visual system as a set of n resolvable values. That is to say, n

distinguishable slants are represented. For any n, there is a grain of resolution that corresponds to an

uncertainty in slant. Three natural forms for representing slant would be to store the slant angle o directly, or

either tano or coso. The tangent of the slant angle is suggested, for (a) it is the straightforward polar

component taken from gradient space hence the computation of distance from surface orientation would be

simplified (section 4.2.6), and (b) a normalized texture gradient provides surface slant directly in that form

(part II, section 4). The cosine form has been suggested (e.g., by Attneave [1972]) as a natural expression of

slant, in part because it is simply related to the eccentricity of the foreshortened image of a radially symmetric

form (e.g., a slanted circle images as an ellipse).

An experiment was performed to determine between these possible forms for representing slant (see

appendix B). The result is that slant can be resolved with a precision of better than two degrees over the

entire range of slant angle. To represent slant by the cosine of slant angle to this precision would require that

the cosine of zero and the cosine of two degrees be resolvable. Consequently, roughly 104 resolvable values

would be required, which is unlikely, given that slant judgments are precise to only a few degrees out of

ninety. Similarly, the tangent form would require considerably finer grain of resolution than is exhibited by

our ability to resolve slant angle. If, however, slant were represented directly by angle, the slant v.
representation would not require resolution greater than one part in one hundred. F

. 'p .
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5. SUMMARY

1. 3-1) information is present in the image, in part, as geometrical configurations such as parallelism, inflection
points, and regularity. While often described as invariants, they do not have unique inverses back into three
dimensions -- very different 3-1) configurations may project to the same ilnage configuration. So their 3-D
interpretation must be further constrained. The central issue of this report is examining the needed
constraints.

2. Surface orientation is probably represented in a polar form which makes explicit the orientation of surface
tilt ("which way") and the magnitude of surface slant ("how much") rather than the well-known Cartesian
form based on Gradient space. The reasons are:

(a) Surface orientation (up to a reflection in slant) is naturally represented in a
polar form. The ambiguity in the direction of surface tilt is implicit when tilt is
specified only as orientation (0 < r < v). This ambiguity would have to be
expressed explicitly in a Cartesian form.

(b) The computations of slant and of tilt may then be performed independently.

(c) Imprecision in apparent slant, when present, is not necessarily accompanied by
imprecision in Lilt. This is more easily attributed to a polar form which
orthogonalizes slant and tilt, than to a Cartesian form (each of whose components
necessarily are functions of slant and tilt).

(d) Since information about the orientation of surface tilt is often more reliable
than information about the magnitude of the slant, discontinuities in surface
orientation are more reliably detected when those components are independent.
Furthermore, the detection of discontinuities in surface orientation can then be
treated as two distinct "subproblems": detecting tilt discontinuities and detecting
slant discontinuities.

3. Slant is probably not represented by either the tangent or the cosine of the slant angle (those being two
natural choices). On the other hand, slant represented directly in terms of slant angle would require an
internal precision of no more than than one part in one hundred to account for the experimental data.

4I
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PART I!
TEXTURE ANALYSIS

I. INTRODUCTION

"Ie image of a textured surface (refer to figure 6) contains 3-1) information about the shape and distance of

the surface relative to the viewer, and information about the texture itself such as its detailed structure and

physical composition, It seems natural to expect that 3-1) information can be extracted independently of

information about the physical texture. But what about the various types of 3-1) information -- can surface

orientation and distance information be extracted by distinct computations? 'hc feasibility of such

computations is the subject of this part of the report
'he 3-1) information is often attributed to the "texture gradient", an informal term referring to the

systematic variation in image texture associated with projections of smooth surfaces. There are two

assumptions:

(a) that quantitative measurements of image texture such as density are
mathematically related to 3-1) quantities such as distance, and

(b) that the human visual system somehow capitalizes on these relations in order to
derive or extract those 3-1) quantities.

It is probably fair to say that neither assumption Nzs been adequately substantiated, as the following

disLussion will show.

The first assumption concerns the mathematical basis for extracting 3-1) information. Several

mathematical relationships have been proposed which express either the slant of a patch of surface, or its

distance from the viewer, in terms of various "image variables", which I shall term texture measures, such as

density, si/c, and foreshortening. let us consider firs the proposed slant relations.
The slant angle was shown to be related co the gradient of various texture measures [Purdy, 1960; Stevens,

19791. For example. tan a = Vp/3p. where a is the slant angle, p is the texture density at a given region in

the image, and V is the "grad" operator. These relations are mathematically correct, but most are probably

not useful since they cinbody assumptions which are seldom satisified in natural scenes. Those assumptions

will be discussed in detail later in the article.
The other 3-1) quantity which has been related to the texture gradient is distance. Two forms of distance

information have been proposed. First, Gibson 11950a. 1950b] claimed that the relative texture density at two

regions of the image equals the relative distance of the corresponding surface points. [his is not correct.

I )cnsity is a function of the foreshortening as well as the distance to a give surface point, as will he discussed

la er. The other form of distance infbmilation is not merely a ratio of distances, but some linear distance

determined up to a multiplicative constant. UnfortunatCly, instead of measuring distance radially from the

eye to the surface, the distance k measured "on the ground" from the observer's feet, as it were [Purdy. 1960:

Ilajcsy. 1972: Iajcsy & ILieherma. 1976J. A recent example is floond in Rosinki 119741, citing [Purdy, 19601.

in which distance I) is related to the gridient oftexture density p ty I) = IlVp/3p, where It is the height of
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Figuire 6. An inmage of surface texture. [he apparent "texture pradient". the smooth variation in image
texture. is a consequence of pcrspcctikc propection. I low do we derive the 3-1) interpretation of this image?
What is computed -. distance, or surface orienltation. or hoth? What constraints underlie the computation?
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the eye abome the surface. The appealing simplicity of this relation notwithstanding, there are several

problems with the underlying definition of distance. 1). That definition does not extend reasonably to

surfaces other than the horizontal ground (two surface points that are radially equidistant from the viewer but

ditflr in slant would lic at different distances according to that definition). Also it seems not to correspond to

the psychological notion of visual distance.

A texture gradient does carry information about the radial distance to points on a surface, however.

Distant features on a surface project to a smaller size than those that are closer. A smooth surface of uniform

texture therefore presents a continuously varying scale from which distance up to a multiplicative constant

might be recovered. (see Gibson's "law of visual angle" (Gibson 1950a] and the discussion of "scale" by

Haber and Hershenson 119731). What remains to be made precise is the notion of"size" or "scale" in terms of

real images. That would lead to a simple and elegant mathematical relationship between distance (radial

distance specified up to a multiplicative constant) and the texture measure corresponding to "size". It is

somewhat surprising that so little attention has been paid to this almost obvious source of distance

information. Instead, the mathematical treatment of texture gradients has usually involved rates of change of

texture measures.
To summarize this discussion, texture gradients do carry useful 3-1) information, but not in the way that it

is usually formulated. We now turn to discuss the second assumption, the psychological reality of the

proposed mathematical relations, an aspect of the texture gradient problem which has actually received more

attention than the theoretical aspect just discussed.

Even if we derive i mathematical expression relating some measure of texture and some 3-D quantity, and

this relation is founded on reasonable computational restrictions, it remains to be determined whether the

visual system actually uses the given texture measure. For example, one would like to determine, by

experiment, whether the visual system derives slant information from the variations in texture density.

Unfortunately there is not a sufficiently close correlation between slant judgments and those predicted

mathematically to do so -- the experimental evidence is inconclusive (see JEpstein & Park 1964] for a review).
A good example of the difficulty inherent in demonstrating whether a given texture measure is used by the

visual system concerns the density measure. Although Gibson [1950a, 1950b] argues the importance of the

density gradient, a density gradient of dots does not suggest a surface of definite slant [Smith & Smith. 1957:
Braunstein. 1968: lraunstein & Payne. 19691. 'o pursue this point a bit further, note that the dot pattern in

figure 7a may seem to be a countercxample -- the impression of a slanted surface is strong. But figure 7b

shows that the impression is due to the apparent horizon. (Figure 7a viewed with a field-limiting mask

similarly fails to suggest a definite surface so long as the "horizon" is not visible).

The ineffectiveness of the density gradient in the case of dot patterns needs explanation. Is it the case that

the density gradient is used as a source of 3-1) information, but not for dot patterns? (if so, why are dot

patterns ineffective -- they provide excellent density information.) Alternatively, is it because the density
gradient is not used as a source of 3-1) information, and a dot pattern presents no other information such as a

gradient of texture size? Iater in this article we shall see a strong reason for not using the density gradient.

I lence the Liter alternative is currently favored. The primary point I which to make is the following: there is

experimental evidence against the density measure being used as a source of 3-1) information, but little
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IFigurc 7. 'I'hc density graidient in a seems to suggest at surface. but Ole impression is largely duc to the

appairent hori/on. In b the Upper boundary is no longer intcr-pretcd ats in honi/on and the pattern no longer

SoIggests it definitc surface. Thcrc are computational reasons to expect that at density gradicnt would not he

4 U'M~t1II for computing shape from texture.
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cvidence of what measure is used.
Another, surprisingly difficult, problem is to determine what sort of 3-1) information is computed -

w.hether it is disunce, or surface orientation, or whether both are computed independently. (Other, more

qualitative, dcriptions of surface shape are also a possibility.) We simply do not know whai is computed.

'his point must be settled in addition to die issues of which texture measures and which mathematical
relations forni the basis of die computation.

impirical study of texture gradients has been difficult for several reasons. First of all, the slant judgment is

a difficult quantity to interpret. The apparent slant is usually underestimated, a phenomenon called
"regression to the frontal plane" which varies with time [Gibson, 1950b, Smith & Smith, 1957; Beck, 1960;

Purdy, 1960: Freeman, 19651. ]e variability and underestimation in slant may be due to several factors, not

the least of which is the effectiveness of the given texture in suggesting a cohesive and continuous surface.

This confounds any attempt at studying texture gradients with synthesized (e.g., line drawing) textures. For

instance, the apparent slant may be increased and the variance of slant judgments reduced simply by

increasing the overall texture density while holding the image geometry constant (corresponding to a fixed

viewing position relative to a surface whose texture density has been increased). Phenomena such as this

make it difficult to postulate differences in visual mechanism on the basis of differences in slant judgment, as

attempted in the following.

Figure 8 appears to be a perspective projection of a planar surface with parallel equally spaced rulings, like

a plowed field. In fact, a texture gradient comprised of converging linear contours usually produces a more

compelling 3-1) effect than does a texture gradient of individual elements (figure 9) [Clark, Smith, & R.be,

19561. The gradient of spacing between contours has been distinguished from other texture gradients and

termed "linear perspective" [Gibson, 1950b: Purdy, 1960; Freeman, 19651. It has been suggested that linear

perspective is analyzed by a distinct perceptual processes, primarily on the basis of the superiority of linear

perspective over a gradient of discrete texture elements in suggesting a slanted surface [Gibson, 1950b: Purdy,

1960: Freeman, 1965]. But we shall see later that the computational problems presented by these figures are

equivalent and therefore may be solved by the same method. There is no computational reason to postulate

separate mechanisms. Furthermore, the noted difference in apparent slant may have other causes -- one need

not postulate separate mechanisms to explain that observation.

Also. a texture gradient is difficult to present "in isolation" of other sources of 3-1) information. One must

first prcsent the texture monocularly, prelerably with a synthetic aperature to remove accomodation cues to

distance and a chin rest to restrict motion. (A photograph of a textured surface presented in this manner

usually provides a satisfactory 3-1) impression.) The difficulty occurs in further "dissecting" the texture

gradient for instance, to understand whether the 3-1) inpression is due to a ,radient of density, or of element

size, or of height-to-width ratio, or some combination of the gradients of these and other measures. In a

natural sene all measures of texture vary together: as the density increases the elements get smaller, etc. So a
computer displa) seems an appropriate tool, for one may generate synthesized texture gradients where this

does not necessary occur. Ih controlling the dimensions of the individual texture constituents of the display,

one may vary one measure at it time, it would seem. But isolating the contribution of one texture measure is

difficult when the "texture elements" have mcasureable size. (Recall that texture gradients of mere dots do

71
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Figure 8. The texture gradient in this figure depicts a planar surface ruled with parallcl and equally spaced
straight lines. The figure should hc viewed monocularly fromn a distance of roughly 10 inches. 'Ibis gradient
of spacing between contours has been termed "linear perspective" and distinguishel from other texture
gradients (e.g., figure 9).
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Figure 9. This photograph shows a texture gradient which is qualitatively different from the "linear
perspective" in figure 8. While these two figures appear different. thc 3-1) informnation that they carry may
be extracted by a common rncriiod. There is no compuwitional rcason to postulate separate perceptual
mechanisms.
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not effectively suggest 3-I) surfaces. We are pretty much forced to use textures composed of finite lements.)

For example, suppose one wishes to examine die contribution of density gradients to the 3-1) effcCL How
should the texture elements themselves project? In true perspective the texture elements should be scaled
according to their distance. But that would introduce an unwanted gradient of texture size in addition to the
desired gradient of texture density. On the other hand, one might attempt to vary texture density while
holding the element dimensions constant (this is easily achieved using computer displays, one merely
increases the element density appropriately but keeps the clement dimensions fixed). But that too is
unsatisfactory -- the lack of scaling with distance is distracting and acts ;,o decrease the apparent slant. This
problem occurs in attempting to isolate other forms of texture gradients as well.

We will leave the difficult problem of psychological verification just reviewed in order to concentrate on
the theoretical problem of relating variables in the image texture to distance and to surface orientation. The
first step will be to consider the transformations that occur in projecting surface texture onto the image.

Ii
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2. SCALING AND FORESIIORTENING

When a patch of textured surfice projects in perspective onto the image plane, two geometrical

transformations occur: scaling and (in general) foreshortening:

Scaling occurs because the surface patch subtends a visual angle that varies
inversely with its distance from the viewer.

Foreshortening occurs when the surface patch projects obliquely onto the image
plane, and so causes the texture to appear compressed in the direction that it slants
away from the viewer.

Scaling is actually a function of two variables: the scale of the actual surface texture (whether it is sand or
sea waves) and the absolute distance of the surface from the viewer, but if we want to recover distance only up

to a scale factor the surface scale is irrelevant. Scaling is an isotropic transformation -- linear dimensions in all

orientations are equally scaled. Foreshortening, on the other hand, is an anisotropic transformation -- surface

dimensions that lie parallel to the image plane are not foreshortened, all others arc foreshortened according to

the angles they make to the image plane.
T"o visualize the commonplace foreshortening function, consider all the diameters of a circle drawn on a

slanted surface. The circle projects orthographically to an ellipse: its various diameters are differently

foreshortened except for that diameter which lies parallel to the image plane (and which projects to the major

axis of the ellipsc). The greatest foreshortening occurring to that diameter which projects to the minor axis.

''his decomposition of perspective projection into scaling and foreshortening lets us explicitly address the

two effects of the projection that are directly related to surface shape. It is from these effects that one may
infer distance and surface orientation.

Each small region of image texture may be thought of as the projection of a patch of the physical texture,
where the transformation is completely determined by the distance and orientation of the corresponding

patch on the physical surface. Can we recover the distance and orientation by somehow measuring the effect

of this transformation, without having a priori knowledge of the physical texture? (If the transformation has a

unique1 inverse, perspective would be invertible and this would be possible.) The crucial point is to choose

the right measure of the image texture. We shall see, for instance, that texture density does not lead to a

unique inverse -- the perspective projection is not invertible when described in terms of density.

In general surface texture projects nonuniforrnly. But what might we infer if the texture is uniform across

the image? One interpretation is that the surface texture is uniform and both the scaling and foreshortening

are constant. In that case, all points on the surface would be equidistant from the viewer and would present

the same surface orientation. On the other hand. the surface texture might not have been uniform: it was only

the viewpoint that caused the texture to appear uniform. This is not usually the case, simply because of the

rarity of combinations of irregular surface texture and viewpoint that would mislead us this way.

Image texture that varies systematically has been inforrially termed a "texture gradient". I will continue

I. Ihe inversc phrased in icnns ordi.tancc need only he spccificd Lil to a .1ac ractor.
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this use of the term. "bcrc arc three contributions to the texture gradient, i.e., three causes for the variation in

texture:

(a) variation in distance to points across the surface. The result of distance
variation on texture will be termed a scaling gradient.

(b) variation in surface orientation across the surface relative to the viewer. The
result of variation in surface orientation on texture will be termed a foreshortening
gradient.

(c) variation in the physical texture across the surface. Nonuniformity of the
surface texture may produce a texture gradient that is indistinguishable from that
due to scaling and foreshortening. So it is probably necessary to assume that the
surface texture is unifon so that the nonuniformity may be attributed to changing
distance and surface orientation. (However we shall see that positive evidence may
be found in the image that would support this assumption, and also indicate when
the surface texture is probably not uniform.)

The foreshortening gradient may be isolated from the scaling gradient by viewing a curved surface from a

distance that is large enough so that variations in distance to points on the surface is small compared to their

absolute distances, i.e., the surface is viewed in orthographic projection.' Bear in mind that the physical

texture is assumed uniform. In this situation the scaling is effectively constant across the image of the surface

-- there is no gradient of scaling, only a gradient of foreshortening.
But if the same surface is viewed from nearer by, there would be significant variation in the distance to

points on the surface. The farther patches of surface project % th a smaller scale, so a scaling gradient would

also be apparent.
(Note that there will also be a gradient of foreshortening due to variation in the surface orientation relative

to the viewer. Hence even a plane surface seen in perspective presents a gradient of foreshortening -- as the

line of sight approaches the horizon the slant approaches r/2 and the foreshortening increases accordingly.

'hus it is relative, viewer-centered curvature and not intrinsic surface curvature that causes die variable

foreshortening.)
Scaling and foreshortening must be described quantitatively in terms of some measures of texture. By

judicious choice of the measure, we can attend to that component of the texture gradient that encodes surface

orientation or that which encodes distance. What measurements should be made? Candidates that have been
proposed are density, size (the linear dimensions of distinct "texture elements"), area. and height/width ratio

(or "aspect ratio"). To preserve the orthogonal decomposition that we have been seeking, the following

criteria should be met:

I. If the surface .whiends a relainetv inall visua angic one may treat the projection as ihe con eniional orhographic projeciion (also
called parallel provection) omto a planiar image. Oihcrwise it is more appropriale it treat the projection as polar orthographic onto a
spherical image.

r_ _ _ __ _ '.
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When computing distance, the texture measure should be indepcndcnt of
foreshortening.

When computing surface orientation, the texture measure should bc independent
of scaling.

At this point we understand why density is not a useful measure for computing either distance or surface

orientation: Texture density p is a function of both the surface slant a and the radial distance d from the

viewer:

p P=Cosa

where ps is the surface texture density. Density does not meet either of these criteria, hence does not lead to a

simple computation of either distance or surface orientation. This may provide an explanation for the

ineffectiveness noted earlier of density gradients suggesting 3-D surfaces.

The next section will introduce a measure of texture that does meet the first of the two criteria, hence

would be appropriate for computing distance.

.fit
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3. COMPUTING DISTANCE FROM TEXTURE

A direct method for computing a depth map (a visible surface representation whose values specify the radial

distance to the surface up to some scale factor) will be introduced which is based on measurements of texture

that vary only with scale, not with foreshortening. Simply stated, we wish to extract a quantitative measure of

the local texture that varies only with the distance to the surface, not with the orientation of the surface

relative to the viewer. The reciprocal of this measure would be proportional to the radial distance to the

surface. The computation itself, therefore, is very simple. The effort lies in extracting the appropriate

measures from the image.

A natural measure is provided by what I shall term characteristic dimensions which correspond to

dimensions on the surface that are not foreshortened, i.e., dimensions that lie parallel to the image plane. One

can easily gain intuition for characteristic dimensions by means of a surface texture ofcircles (figure 10). Each

circle foreshortens into an ellipse, with eccentricity that varies by the cosine of the slant angle. The major and

minor axes, being well defined in the image, present natural lengths to measure. Of these, the major axis

length is the characteristic dimension for this idealized texture -- its reciprocal would constitute scaled

distance. (Note however that a real texture would not present as simple an image geometry from which to

choose the characteristic dimensions.)

The distance computation based on the reciprocals of characteristic dimensions is valid for any smooth

surface, but there is a fundamental restriction: To derive a consistent depth map the measured characteristic

dimensions must all correspond to equal surface dimensions -- the surface texture must be uniform. This

restriction is probably unavoidable in any method for computing distance from texture, as will be discussed

later.

To summarize, the depth map may be computed by:

(a) determining the local characteristic dimensions,

(b) taking their reciprocals as specifying distance up to a single muldtiplicative scale
factor, assuming that they correspond to equal length surface dimensions.

'lhe two steps present the following two problems, both of which are to be solved without a priori knowledge

of the surface texture. The first will he referred to as the characterislic dimensions problem: which of the
dimensions definable in the image correspond to nonforeshortened physical dimensions? Secondly, the
characteristic dimensions must correspond to equal length surface dimensions for their reciprocals to define a

consistent depth map. When is this assumption of global surface uniformity justified? Solutions to these two

problems will now be discussed.

3.1 The characteristic dimensions problem

'1he difficulty of this problem depends on when its solution is attempted. If deferred until the physical units

of texture are recognized (as individual rocks, waves, or blades of grass) then their characteristic dimensions

may be extracted with assurance. (Also the problem of justifying the equal surface dimension assumption is

simplified.) it this texture analysis is probably attempted prior to recognizing the physical causes of the

__________ .j - Ij
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4C=
I== Cj

C=>c 4C=

Figure 10. A texture of' circlcs is useffil for introducing characteristic dimensions. In this instance, the major
axeCs of the individual ellipses arc nonliresh(,rtencd and thus may serve as characteristic .dimcnsions.
Assuming that tie circles arc all of equal diameter. the reciprocals of these lengths would provide values for a
depth map. A basic Visua problem is to determnine thecse dimensions from real images without a priori
knowledge of thc physical surl'aee texture.
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image texture, so all that is available to deternine the characteristic dimensions is the arrangement of intensity

,ariatiuos in the iinagc. Consequently we seek a geometrical solution.

3.1.1 Characteristic dimensions and intensity variations in real images

Figure II shows images of real surface textures where examples of characteristic dimensions are indicated by

line segments. These were drawn by intuition, and in questioning how to consciously choose them in these

figures we recognize a fumdamental computational pioblem in their extraction: on the one hand, the

measurements should depend solely on the viewing geometry and the geometry of the physical texture, but on

the other hand, these measurements are to be extracted from intensity information which is intimately tied to

the particular illumination and reflectance properties of the surface.

Using the metaphor of applying a ruler to the image -- what should we measure? Perhaps the dimensions

of patches of roughly constant image intensity? Or the separations between edges that are intersected by the

ruler along its length? Or the dimensiois of closed zero-crossing contours available in the computation of the

primal sketch IMarr & Hildrcth, 1979]. This ruler metaphor suggests methods for extracting quantative

descriptions based on explicit measurement of discrete image "features". Alternatively, should we distinguish

peaks in the Fourier power spectra [llajscy, 1972; Bajcsy & Lieberman. 19761) as signifying the prominent

dimension of the texture in any vicinity? 'Ihis method would use spatial frequency as an image "feature"

which seems more continuous than discrete.

How characteristic dimensions are actually measured is not easily settled, since one cannoi point to any one
method as being intrinsically "correct" -- it is inevitable that any method of solution to this problem will nnly

be heuristic if attempted on the basis of insufficient information, as is the case in attempting to compute a

depth map without a priori knowledge of the surface texture. The solution is probably based on detectable

geometrical properties of the texture which indicate the appropriate lengths to serve as characteristic

dimensions. In the following we shall examine these geometrical properties. The distinct issue of how the
lengths are actually extracted will not be addressed in this study.

3.1.2 Characteristic dimensions may be defined geometrically

Characteristic dimensions correspond to nonforeshortened surface dimension:, therefore each is the
projection of a length lying in the tangent plane of the surface, oriented such that it lies parallel to the image
plane. For a smooth surface that means that the characteristic dimensions are locally parallel (and also

globally parallel if the surface is planar). Local parallelism is the first of several geometrical properties of

characteristic dimensions that may be used as the basis for their selection.

Secondly, the characteristic dimensions are oriented perpendicular to the local surface tilt (this fact was

observed in part !. section 4.2.1). What remains to be shown in order to use this property is that the local tilt

can be determined on the basis of the texture. But that is straightforward:

For any smooth surface the scaling and perspective gradients coincide -- the orientation of greatest change

in foreshortening and the orientation in which scaling varies most rapidly both align with the surfce tilt.
Consequently the gradient of any measure of texture that is sensitive to either foreshortening or scale, or both,

may be used to indicate the tilt orientation.

'his second property may be rephrased in the the following way, which although mathematically
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Fivurc ILI. Iniiiti cChoices for characteristic dimeni~ons ire indicated hN linei segments in tdiesi instances of
lrex i rcs. In q iet ioning ho"~ to coimc Colislv Choose (1he charlacteristic dimnisions we~ rcengni/c a fundamental
comptitatiiui~il prob~cle in texture ail.ss: the extraction of qLuantamatke deciiptions From intcnsity
infrmantion.
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* equivalent suggests a different algorithm: The orientation of the characteristic dimensions is everywhere

equal to the orientation in which measures Of texture (that are sensitive to fbrcshortcning or scale variations)

exhibit tie least variability. That is, tie characteristic dimensions are locally aligned with the orientation of

greatest regularity. Note that computing this orientation is distinct from computing tie orientation of the

gradient.

In sum, the characteristic dimensions are locally parallel, oriented perpendicular to the texture gradient,

and aligned with the orientation of least texture variability.

3.1.3 An example

In the introduction, the converging lines pattern in figure 8 was given as an example of "linear perspective"

and I suggested that there is no computational reason for treating this sort of figure as a special case distinct

from textures composed of small discrete features. We will now pursue this point and at the same time

provide an example of how characteristic dimensions might be defined in an image.

Consider the texture in figure 12a, which when viewed monocularly from the appropriate distance is

interpreted as a slanted surface receding in depth. The "texture elements", as it were, are straight lines which,

in and of themselves. do not provide useful dimensions (especially when viewed through an occluding mask,

as the circular boundary in figure 12 is meant to suggest). One useful texture measure is the separation

between the lines, which diminishes with increasing distance to the surface, However the term "separation"

must be made precise, and towards this end the geometric properties of characteristic dimensions just

introduced are useful: An imaginary ruler placed across the image will intersect successive lines at increasing

or decreasing intervals along its length, in general. At one orientation, however, successive lines are

intersected at regular intervals -- this orientation corresponds to that of the characteristic dimensions (figure

12b). The reciprocals of these intervals between lines would give us the depth map. Two observations may be

made from this.

First, the characteristic dimensions are locally parallel and oriented with the greatest regularity. But it is

difficult to determine the orientation of the gradient of spacings between successive lines -- it is not well

defined locally. This is particularly true when few lines are presented. Three divergent lines are sufficient for

precisely computing the tilt orientation in terms of regularity but not in terms of the gradient. So, despite

their mathematical equivalence, the orientation with greatest regularity (or least variability) is easier to

compute than the orientation with the texture gradient.

Second, the relevant texture measure does not correspond to the dimensions of discrete "texture

elements". Instead, the measurements correspond to laying down a ruler, as it were, and determining the r
local statistic (such as the separation between successive contours) that is most regular. Importantly, this

approach which is exemplified by the "linear perspective" case, extends as well to the more natural case of

discrete blob-like textures.

3.2 Uniformity and regularity ofsurface texture

As discussed ealier, the surface texture is assumed uniform when inferring distance from tIle reciprocals of

the characteristic dimensions. Ily "ffliflrnl" we mean that the physical dimensions corresponding to the

• , .;r.; ' . - _ u .A,
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Figure 12. 'Ibe texture in a poses an interesting question regarding the extraction of characteristic dimensions
from an image -- how are they defined when the dimensions of the individual "text,,rc elements" are not
rcleant? The appropriate texture mcasurement seems to involve the separation between lines. In these
terms. we find that the orientation of the gradient is not easily determined, hut the perpendicular orientation
is. The orieuation in which successive lines are intersected with he most regular intervals may be accurately
determined hy a simple local process. This orientation is shown in b. and corresponds to the orientation of the
characteristic dimensions. The reciprocals of these intervals, would give us the depth map.
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characteristic dimensionj arc equal across the surface. Is there visual evidence in the image that would

support the uniformity assumption? That evidence would allow the distance computation to be restricted to

only those instances where the results would likely be accurate.

"llicre are two basic issues that must be addressed. Ihe first is local regularity, as measured by the variation

in physical size of the texture markings in any sufficiently small locality, The second is global uniformity,

whether the local properties are constant across the surface. The four extremes that might occur are as

follows:

1. Locall' regular and globally unifornn. Examples would be a field of poppies, cars
in a parking lot. leaves on the ground. In each instance the individual elements
are restricted to a small range of sizes, and the mean size is constant across the
texture. 'That is, the variance is small and the mean is constant.

2. Locally regular but globally varying. An example would be waves on a lake,
where the waves in any vicinity are of similar size but that size varies gradually
across the lake according to the wind strength in each region. Another example
would be a rocky beach where the surf acts to sort the pebbles according to size.
While the variance is small the mean is not constant. I suspect that this case is less
frequent than case (1) for reasons that will be discussed shortly.

3. Locally irregular but globally uniform. An example would be a field of rocks
where in any vicinity small pebbles might be found beside large boulders, but the
distribution of sizes is constant across the field. Another example would be sea
waves, where there is a large range of wave sizes in any vicinity, with small waves
superimposed on larger. While the variance is large the mean is constant. 'Ibis is
probably a common situation.

4. Locally irregular and globally varying. Any case where the variance is large and
the mean is not constant would be useless for the depth computation.

These extremes were presented in the order of decreasing usefulness for the depth computation. Physical

textUre of type I is the best for our purposes. The small variance and constant mean across the surface results

in a depth map that is accurate and precise. If the mean varyies slowly (type 2) the depth map would falsely

indicate greater distance where the surface texture diminishes in actual size, and vice versa. The depth map

would be precise but not accurate. If the local size statistics are not tightly distributed, as in types 3 and 4, a

different problem occurs: The depth map would be imprecise due to uncertainty in the local characteristic

dimensions. For example. with the field of rocks a small pebble might lie adjacent to a large boulder. The

characteristic dimensions must therefore be locally averaged in order to estimate the corresponding distance

to the surface. In the case of sea waves, however, the distribution of si/es may be broad: small proximate

waves may be as plentiful as large distant waves and all intermediate wave sizes may be equally plentiful. In

that case it is difficult to compute a useful estimate of the local mean, and depth computation on the

characteristic dimensions would require more complexity. (One possibility is to select only qualitatively

similar wa%es, in effect ignoring the small superimposed wavcs in order to attend to sea waves of common

size.)

Reflecting on these four extreme cases, it is apparent thai an estimate of the local variance in characteristic

dimensions is important. Ifthe variance is low, we ha%e either type I or 2 texture and the depth map accuracy

is limited by the constancy of the physical mean si/e across the surfice. If the variance is larger (type 3), hut

__ __ __ _ __ __A
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the local mean may still be estimated, the depth map may be computed, but to less precision.

ilie local variance of characteristic dimensions provides an indication of the precision of the depth map.
but no indication of its accuracy. Evidence for the accuracy is global, and is based on qualitative similarity of
properties that would be invariant over perspective projection. Examples of possible similarity measures are
color and intensity statistics, qualitative shape descriptions of the individual markings, and other measures
which allow one to determine whether the physical surface texture is qualitatively constant across the surface.
[hat is, global similarity indicates qualitative uniformity. The two criteria that we will use, then, are (a) local
regularity and (b) global similarity. From these we may infer global texture uniformity in the following

manner.
Local regularity indicates the physical surface is either type 1 or 2. Global similarity indicates the surface is

more likely type 1, since any physical texture so constrained is probably produced identically across the
surface. For example, oak leaves strewn across a yard are qualitatively similar and have similar sizes. The
global uniformity in leaf size is a consequence of how leaves develop and is independent of how they are
distributed across the ground. In short, type I is probably more likely than type 2. If this is true, then in the
presence of global similarity:

the mean physical texture size is assumed constant across the surface if the local
variance in image texture is small.

We have discussed the case where the texture has small variance locally. What about types 3 and 4? Can
they be distinguished? Without the tight constraint on textur( size the constraint on mean size cannot be as
readily assumed. Nonetheless, if the texture is qualitatively similar on various dimensions we can assume that
the mean, despite the large variance, is roughly constant. 'hat is to say, significant global similarity indicates
the surface is likely type 3 rather than type 4.

It must be stressed that these justifications for assuming texture uniformity are heuristic, and that their
utility stems from the overall tendency for surface textures that are strongly constrained in their qualitative
properties to be constrained in size as well. It easy to find counterexamples to this, nonetheless, it seems
unlikely that better evidence may be found in the image.
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4. COMPUTING SURFACE ORIENTATION

In perspective projection where significant scaling variation occurs across the image, we have two ways to

compute the local surface orientation. le orientation may be computed from the gradient of distance values

in the depth map. Also, the orientation may be computed in the image, by the gradient of the characteristic

dimension 8:
v6

tan. = T

where a is the slant angle. In fact, this computation has the benefit over the depth computation in requiring

only that the surface texture be locally uniform. But the computation of either distance or surface orientation

from characteristic dimensions is ineffective when the surface is in orthographic projection. Despite the

foreshortening gradient in the image due to surface curvature, the depth map would be constant falsely

indicating a flat surface. How then might surface orientation be computed?

4.1 Aspect ratio: dependent on foreshortening, independent of scaling

To take advantage of the foreshortening gradient as a source of information about surface orientation, it

would be necessary to have the computation valid not only when the projection is orthographic but also when

the scaling gradient is significant. This may be achieved by having the texture measure sensitive only to

foreshortening, as suggested earlier. A texture measure that has this property is the "height/width" ratio, also

called "aspect ratio". This measure is the ratio of the projected dimensions of individual surface mark'ngs

taken in the direction of the gradient and perpendicular to the gradient (the latter being the characteristic

dimension). In the special case of roughly circular surface markings (which project as roughly elliptical) the

aspect ratio e directly indicates the local surface orientation:

cosa = e. (1)

But if we are not going to restrict ourselves to circular markings on the surface, the normalized gradient is

useful:

tan. - (2)e

where the particular aspect ratio of the actual surface markings need not be known: they only must be locally

constant. 'lhc difficulty that arises from this measure e is as follows: how do we know that the aspect ratio

(which we define on blobs in the image, for instance) is a valid measure of foreshortening of markings on the

surface?

4.2 The difficulty in computing slant from foreshortening

Surface texture is foreshortened according to the cosine (1) if it lies flat on the surface, as is the case with

pigmentation markings and patches of differing physical composition. E'xamples would be fallen leaves,

lichen on a rock, water lillies on a pond, and patterns of mottled light on the ground below a tree. But

surfaces are usually textured "in relict" -- the elements that comprise the texture extend above and below the

mean surface level. Consider the crests and troughs of waves, rocks strewn across the ground, and blades of
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grass. When viewed other than at zero slant, the texture is foreshortened, but not simply by the cosine. 'he

relation between e measured in the image and surface slant a is not as easily determined without knowledge

of the physical texture.
In one extreme. if the surface elements are roughly spherical (e.g., pebbles on a beach) their dimensions

would be roughly constant regardless of viewpoint, hence thcrc would not be a foreshortening gradient -- if
mcasured in terms of aspect ratio e. Nonetheless, there would be a texture gradient due to foreshortening

because the surface patch is foreshortened regardless of whether the individual markings on the surface are
foreshortened. This would be apparent in terms of texture density, but unfortunately density is confounded

by a scaling gradient as well.

In the other extreme, the surface elements might be grass blades which extend normal to the surface,
whose foreshortening (measured by the eccentricity e) would vary according to the sine, not the cosine, of the

slant angle. Then we would have that

Vecotaf --7

Consequently, we have three well-defined foreshortening functions, cosine, sine, and no foreshortening. To

choose among these cases in order to infer slant a from E measured in the image we must know whether e

derives from texture that lies flat on the surface or from texture that extends above the surface -- and if the
texture is in relief, whether it is foreshortened by the cosine or not at all. (Most physical textures do extend in

relief and therefore fall intermediate between the extremes of sine foreshortening and no foreshortening.)
Furthermore, if the surface markings are closely packed (as is the case with water waves, tree bark, and

pebbles on a beach) there is a succession of occlusion -- of waves occluding waves, for instance. The occlusion

is relatively greater with increasing slant and thus affects the apparent aspect ratio as measured by e. Hence

successive occlusion amounts to another, confounding, foreshortening effect. For example, the amount of I
occlusion of successive waves is a complex function of the viewing angle. As this depends critically on the
particulai -=rface geometry (it is quite different for tree bark, for instance) we are left with two difficult
problems when attempting to infer slant from aspect ratio E:

l)istinguishing the foreshortening due to oblique projection from that due to

successive occlusion. The measure e would confound the two effects.

Inferring the particular foreshortening function for this texture. What is the
relation between e and a?

Aspect ratio t was proposed as an appropriate texture measure for computing surface orientation because

it is related to foreshortening but is independent of scaling. But the relationship between t and a depends on
the particular surface texture, and any choice appropriate for a given situation will often be inappropriate for

another. For instance, if the slant computation is correct for flat surface textures it will be incorrect for
surface textures in relief. Thus the Lscfulnes of aspect ratio would appear slight.

'lhere is probably no alternative texture measure that is independent of scaling but varies in a predictable
manner with foreshortening. Consequently we might turn to a special case approach: using some measure

such as texture density, which does vary with both scaling and foreshortening, but only use it when it is

known that the scaling contribution to the density gradient is negligible. If the depth map (computed by the

____ ___ ___ _ 1
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reciprocals of characteristic dimensions) is flat, we know die scaling is constant so the gradient of texture

density is solely a consequence of foreshortening. Thus we may compute surface orientation from a texture

measure that varies with both scaling and foreshortening when the scaling is constant.

We have discovered the difficulty in computing surface slant from measures of foreshortening -- the

foreshortening function depends on the particular relation between the surface texture and the surface, which

cannot be known a priori. Alternatively, the computation may be based not on the foreshortening of the

individual surface markings (as measured by e) but on the cosine foreshortening of patches of the surface (as

measured by density, for instance). Relative to the computation of a depth map, the computation of local

surface orientation appears difficult -- at least the computation of slant does. But the other component of

surface orientation, tilt, is readily computed.

The characteristic dimension 8 was given a geometrical definition in section 3.1.2: in any small region, they

are locally parallel, oriented perpendicular to the texture gradient, and parallel to the orientation of least

texture variability (where one may use any measure of texture that is sensitive to foreshortening, or scaling, or

both). This definition also suggests a way to computing the surface tilt r, since tilt is perpendicular to 8. That

is, the tilt corresponds to the orientation of the gradient, and is perpendicular to the orientation of least

texture variability. (Again I give both definitions because they suggest different computations although they

are mathematically equivalent.) Hence one should expect to compute from texture the tilt of the surface more

readily and more precisely than its slanLt1

1, Ibis point supports the argument madc earlier (section 4.2 in part 1) in favor of de'omp)sing the two degrees of freedom of surface
orientat ion into slant and tilt.

____ I.



Stevens -59- Summary

5. SUMMARY

1. The perspective projection may be usefully thought of as comprising two independent transformations to
any patch of surface texture: scaling and foreshortening. Scaling is due to distance, foreshortening is due to
surflce orientation. A decomposition of the problems of computing distance and surface orientation from
texture mcasures is therefore suggested: When computing distance, the texture measure should vary only with
scaling; when computing surface orientation, the measure should vary only with foreshortening.

2. Texture density is not a useful measure for computing distance or surface orientation, since it varies with
both scaling and foreshortening.

3. Distance up to a scale factor may be computed from the reciprocals of characteristic dimensions, which
correspond to nonforeshortened dimensions on the surface. Characteristic dimensions may be defined in the
image by the following geometrical properties: they are locally parallel, oriented perpendicular to the texture
gradient, and are parallel to the orientation of greatest texture regularity. The computation requires that the
surface texture be uniform.

4. Evidence for uniformity of the actual surface texture is both global and local. Locally the texture must
project as regular; globally the texture must be qualitatively similar. 'lhe assumption that allows one to
deduce uniformity is as follows: if the surface texture has small size variance (which may be detected locally),
the mean size is assumed constant regardless of where the texture is placed on the surface. Justification for
this assumption stems from the following: constraints on the texture size that cause it to be roughly constant
(and therefore of small variance) often occur independent of position on the surface.

5. Surface orientation may be computed from the depth map, by computing the gradient of distance, when
significant scaling variation is present in the image. However the depth computation fails for curved surfaces
in orthographic projection, hence surface orientation cannot be computed from tie depth map in those cases
-- the depth map would falsely indicate a flat surface. In attempting to compute surface orientation from the
image, the texture measure should vary with foreshortening but not vary with scaling. However such
measures are difficult to interpret unless the particular foreshortening function is known which relates the
measure to surface slant. Furthermore, successive occlusion associated with viewing texture which lies in
relief relative to the mean surface level acts to confound the apparent foreshortening. Slant is therefore
difficult to compute. However the tilt may be computed as the orientation of the characteristic dimensions.

4t
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PART III
SURFACE CONTOUR ANALYSIS

1. INTRODUCTION

This pant describes geometrical constraints that may govern the way in which we perceive surficc shape from
surface contours in an image. In figure 13. for example, the smooth curves arc secn in 3-1) as lying on an

Ali undulating surface. We appreciate not only the shape of dhe surface, but also its spatial orientation relative to
us. and to some extent wc perceive the overall surface as receding in depth. Thie difficulty we face in
interpreting figure 13 as merely a two-dimensional family of sinusoids (which it is) shows that we impose
constraints in the form of a priori assumptions. Some of these assumptions lead us to interpret certain curves
in the image as being surface contlours (which correspond to actual curves across 3-1) surfaces); others
constrain the inferred surface shape that we derive by analysis of the surface contours. For the surface
percept to be both definite and accurate. such constraints must define a unique surface, and must generally be
valid.

Although many have considered our perception of the shape of contours (e.g., IKoffka, 19351), the problem
of inferring surface shape from surface contours has received virtually no attention. T'he primary intentions of
this part of the report are

(a) to formalize the computational problem.

(b) to introduce useful and valid constraints towards its Solution, and

(c) to describe why those constraints arc usefuil.

1.1 What information is carried by surface contours?

TIhe contours in figure 13 are in orthographicl projection; hence we cannot derive distance information from
perspectivity in the image. But the shape of the contours does provide surface shape infornmation in two
forms. In the vicinity of the surface contour one may deduce either:

surface orieilalion. Thel relative sumrface orientation miay he solved uniquely (i.e..
uip to at slant reflection since the projection is orthographic) or only to within a
restricted range of slant and tilt.

qualitalive swifiice shap. The intrinsic geometry of the surface may be deduced
fromn the shape of the surface contours. [he primitive desicriptors might include
"flat". "singly curved". "cylindrical". "doubly curved" and so Forth. This sort of
shape in formation is independent ol the viewpoint.

4 I ()nhopraphir projction is cqijialeiii toa parallel projection. as (liposed toa lvrpcvcti%,c projectioti. IVijnre 11 demon strates that we
ita.% pece i %c shiape friii suj rfae rowttoi's in ort liograpih ic pim!ctiioniIa 1.i't we will sc~e that assunij thai the pro jecition is onlhographtc
(mid 1101 perspect zne from.-nnfle tint iii ewinr~ geoini-0n is. probahly tiecessary in the analysis.
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Figurc 13. 'Ilic undulating surface is su~ggested by at faimily of sinusoids. (I'is figure is adapted rroni Bridget
Riley's Aaiarakt 3.) TIhe curves arc naturally interpreted ats surfatce contours, i.c.. the imnages (if markings on a
physical surface. Whai constraints can hc brought to bear in making this 3-1) interpretation?

_ _ _ _Ohl,
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l'his is not t say that a depth ap may not be computed from the image, but that die geometry of contours in

an orthographic image more directly constrains surface orientation and intrinsic geometry than distance -- the

computation of a depth map would effectively require the intermediate computation of surface orientation.

Note that information about intrinsic surface shape serves two useful purposes: (a) it constitutes a

primitive, coordinate-free shape descriptor, and (b) it constrains the'valucs in any representation of surface

orientation or distance. Suppose that it can be determined from the image that a surface region must be

singly curved, then this restriction can be imposed on any independently computed distance or surface

orientation representation -- the distance or surface orientation must vary in a nianner consistent with a singly

curved surface. Later we shall see the contribution of this qualitative shape constraint on the computation of

"shape from shading" (c.f., [Horn, 1975]).

1.2 Contours and contour generators

It is valuable to distinguish between a contour in an image and the corresponding curve in 3-I), called the

contour generator, that projects to that contour (see [Marr, 1977a]). The contour generator is a physical curve

which lies across a surface, such as a boundary between patches of differing reflectance (e.g.. a pigmentation

marking), a discontinuity in illumination (e.g., a shadow edge cast across the surface) or a discontinuity in

surface orientation (e.g., a crease). The contour generator may also correspond to the boundary of the surface

from the given viewpoint.

So on the one hand, we have the contours in the image: on the other hand, their corresponding physical

cUrses in 3-1), the contour generators. To make 3-1) interpretations from the image contours we often need to

understand what causes them -- whether they correspond to object boundaries, shadow edges, or what.

One basic distinction that is often proposed is between object outlines (also termed bounding cotours or

occluding contours) which correspond to the edge of an object's silhouette from the given viewpoint, and

those contours that lie internal to the silhouette (which Gibson has called "inlines"). A slight variant would

be to distinguish only those bounding contours that correspond to the silhouettes of smooth objects. 'Tis

distinction is probably fundamental fir reasons that will be given in the following.

1.3 Tangential contours and surface contours

Physical objects are often smooth, and their silhouettes alone provide a strong source of in tbmiation about

the overall shape [Marr, 1977a]. For instance, consider a vase. Its silhouette pnrjected onto the retinal image

might appear like the outline shown in figure 14a. In this case, the contour that comprises the outline wil be

termed a tangential contour. 'lle name stems from the important fact that the line of sight just grazes the

surface (i.e., lies tangential to the surface) along the corresponding contour generator. This is a direct

consequence of the smoothness of the object. An important class of outlines are those that exhibit qualitative

synimetry across an axis (e.g.. figure 14a). If is assumed that the corresponding surface is smooth then the

silhouette is that of a generali/ed come whose 3-1) shape is recoverable (given some other restrictions, see

I Marr, 1977a1). In this case, the silhouette boundary is comprised of' tangenlial contours. Note that the

surface orientation is known along at tangential contour: the slant is vr/ 2 and the tilt is perpendicular to tle

colntoi r.

_____ ____ ____ ____
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A B

Figure 14. 'Ilic curves in a are interpreted as tangential contouir% and die underlying surfrice is seen is a
generalized cone, in this case, a vase-like object. 'lliose in b are interpreted as surliicc contours and the surface
appears like a gently curved a lg or a ruled sheet of paper.
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In the previous discussion the object was assumed smooth, wherc.upon its outline is comprised of

tangential contours. Rut this is not the case for olbjects with angular faces (is do man) maIn-made objects), Or

objects that are basically 2-I) surfaccs (e.g., a leaf). For such objects the surface orientation is discontinuous

along the contour generator which corresponds to the outline. Since the line of sight does not grate the

surface along the edge, thc silhouette boundary is not a tangential contour. Obscrve that the contours in

figure 14b, which we interpret as the outline of a gently curved shect, present a fundamentally different

problem than the contours in figure 14a. Neither do we assume that the surface is smooth nor that the

contours are tangential contours.
The distinction that I propose is therefore not between "outlines" and "inlines" -- not whether the contour

is along the boundary of the silhouette or interior to the bounary. Instead, the distinction is between the

special case of outline contours, thc tangential contours, and all other contours regardless whether they are
outlines or lie interior to the object's projection. This means that the outlines of objects that are not smooth
will be treated as surface contours for our purposes. The reason for this is the following. The fact that a given

contour is part of an object outline does not constrain the shape of the underlying surface, expect when the

surface is smooth. Otherwise, the contours merely delimit the visual extent of a object from the given
viewpoint. The rest of this section will address the problem of using surface contours. In general, it will not
concern us whether the surface contour is a outline contour as well.

1.4 Surface contours: structural and illumination

Thus far, we have only distinguished between tangential contours which correspond to the outlines of smooth

objects, and all other contours (those being collectively termed surface contours). But there arc various.

distinct physical causes of these surface contours. In particular. we can distinguish two broad categories of
surface contours, roughly speaking by whether the associated contour generator corresponds to a physical

feature on the surface or merely due to illumination. 'The first category will be termed sru,ural confours, the

latter, illuminalion conlours.

Structural contours are the projections of contour generators which mark some discontinuity on the

surface, e.g. of reflectance or of surface orientation. Examples that occur in nature are given by the images of'
pigmentation markings on a zebra, wrinkles on skin. parallel ridges on leaves. rings on bamboo stalks, and

cracks on wood or rock. Images of synthetic objects commonly present structural contours corresponding to

seams, sharp edges, groves, and pigmentation markings.

Ilhmination contours are of three types: (a) the projections of glossy reflections, suich as those that appear
on metallic or wet surfaces, (b) the projections of shadow edges that have been cast upon a surface, and (c) the
images of self-shadows, or "terminators" on surfaces. These three types have been grouped together as

illumination contours because their presence is strongly dependent on the particular illumination and may

shift their position relative to the surlace as the viewpoint or light source geometry changes. Iey are all

potentially usflid sources of infonnation about the shape of the surface, as we shall see, but since they depend
on particular arrangements of illumination and viewing geometry. they may be considered als fortuitous.

It is noteworthy that we derive such strong 3-1) impressions fromt line drawings. It suggests that we do not

restrict the 3-1) analysis ofsurfice contours to contours of known physical interpretation. The curves in figure



Stevens -65 - Introduction

13 are given strong geometrical intrpretations without evidence as to whether they are structural or

illumination.

It will therefore be useful to thc subsequent discussions to present a few examples of line drawings and to

comment on their 3-1) interpretations. i.atcr I shall ret'r hack to these figures in order to illusirate particular

constraints.

1.5 Examples or 3-D interpretations

Perhaps contrary to intuition, individual line drawn curves may be given stable and definite 3-D

interpretations. That is to say, the curve appears to have a definite contour generator fixed in space relative to

the viewer. Admitedly, the impression one gains from casual observation of these figures may be weak; if so,

view them monocularly with a field-limiting tube to help suppress the fact that the figures are merely drawn

on paper. Slant reversals will be disregarded in this discussion since they are expected with orthographic

projection.

An ellipse is a familiar example of a simple curve that appears in 3-I). There are actually two

interpretations: the curve may be treated as a surface contour whose contour generator is a circle, or the curve

may he treated as a tangential contour and the figure is seen as the silhouette of a smooth object (an ellipsoid).

We will only consider the case where the curve is interpreted as a surtce contour. Ifan ellipse is deformed, a
"potato chip" surface is visualized (figure 15a). That is to say, the surface appears singly curved. The

following observation is consistent with that interpretation: the dashed lines in figure l5b, which connect

parallel tangents, appear to lie entirely on the surface.

A few observations may be made about the 3-1) interpretations of individual curves in general. First, if the

contour is smooth and not self-intersecting (as in figure 16a) it tends to appear planar. l'hat is to say, the

contour generator is planar. Note that we may confidently judge the spatial orientation of the planes

containing the contour generators. (Again, disregard the reversals in apparent slant of those planes.) Our

tendency to assume planarity is strong: it is difficult to draw a smooth curv;c (that is not self-intersecting)

which appears to twist in space: it almost invariably appears planar.

Secondly. if tie contour has a sharp discontinuity in tangent. as in figure 16b, the corresponding corner in

3-1) appears io be at right angle. In other words. figure l6b appears to be the corner of a sheet of paper.

Finally, if the curve is selflintersecting (figure l6c) it is given either of two spatial interpretations. In one

interpretation, the contour generator is seen to twist in space so that it does not actually intersect itself. In the

other interpretation, the contour generator is self-intersecting, and the intersection is a right angle. In general,

we tend to assume that obtuse angles (formed either by dicontinuities in tangent or intersections) are

foreshortened iniagcs of right angles. Figure 17 shows various examples of intersecting straight lines, each of

which appears to be a right angle in space. First. note that a simple intersection (figure 17a) is quite effective

in defining a plane. This efl.ct was obsered by Wundt and Iferring (see I uckiesh. 1965: Robinson. 19721).

The parallelograms in figures 171, and 17 are constructed with the same obtuse angles of intersection and line

lengths as the corresponding inersecticons in figure 17a. Their spalial orientations are very similar.

(Appendix A examines our perception of surl'ce orientation with these figures.)

I-igure 18 demonstrates hoth tendencies. i.e., fir planarity and for right angles. The smooth curve in figure

...._,_ A .
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Figure 15. T[he curves in a arc seen cithcr as the sihouettes of smooth objects (tangential contour
interpretation) or as the imlage of potato Chips (surfaEce contour1 interpretation). In the latter case, the surface
is scen as singly curved. and the dashed lines in b appcar to lic entirely on thc surface.
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A

B

Figure 16. In a smooth conlouirs that do not intersct( tend to appear planar and to assumec definite spatial
orientations. In b sharp discontinuities in tangent in the coiltotir arc interpreted ats tlic images of right angles.
Thc sell'intersecting contours in c are secn either to twist in spacc (so that the conlouir generator does not
actually intersect itself) or as the image of it scif-intersecting contour generator. where the intersection is a
right angic.

.
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A B C

l:iguirc 17. Falch inlersection in a has a definite spa ial orientation and appears to be a right angle in 3-1). The
spatial orientations in each row of this figure appear very similar. Note that the figures in b and c are
coistructCd with ti .ame ohtUsc anglcs of'intersection and line lengths as those in a.

. . ..4,, ... . .. . , ;.m~ ;
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18a presents little 3-1) effect. But when tie curve is intcrsccted by a few parallel straight line scgments (figure
181,) a surface like a gently curved piece of paper emerges. Fkch intersection appears to be a right angle in
space, and tie curve itself appears planar. As in figurc 15b, the surlce seems to be singly curved, apparently
because of the parallelism of thc added lines. If those lines are not parallel, two interpretations result. First.
one may interpret the figure in perspective, as if thc surface werc very near the viewer, thus explaining the
divergence of the two lines. Secondly, the surface may be seen to twist in spacc, as a helicoid, i.e., a spiraling

piece of paper. It is worth sketching similar curves in order to observe these effects.

Keeping in mind our tendency for planarity and right angle interpretations, let us examine a few more
simple configurations of curves. In figure 19a the sinusoid does not appear in 3-1), but if a linear component
is added G, = sinax + bx) the cut ve appears to recede in depth (figure l9b). The mouse hole in figijre 19c
also appears in 3-1). These figures are examples of our sensitivity to projections of bilateral symmetry. That is
to say, if a surface contour may be given a 3-1) interpretation for which the contour generator would be

symmetric, that interpretation is taken.
The examples thus far have involved either single curves or simple intersections of curves. In general,

multiple curves (treated as surface contours) are not particularly useful in suggesting a surface unless they are

parallel, or they comprise a familiar arrangement. (The latter case is not of interest to this study.) An example

of parallel contours of which we are seldom aware is provided by haichures, the regular parallel markings
used by engravers. Examine the bust of Washington on a dollar bill. The engraver varies the spacing of the

hatchures in order to shade the depicted surface, but also, tie hatchures follow the surface relief
"appropriately". Observe that the undulations in the hatchures suggest surface features such as ridges :Ind
depressions. Another instance in which parallel contours suggest a surface is shown in figure 20, a graphical

depiction of a function of two variables. A function z = fRx,y) is often displayed by a family of curves

produced by holding either x or y constant for various values, and continuously varying the other parameter.
These curves are othographically projected (usually from an oblique viewpoint) to present a display of the
function surface as if it were intersected by a set of parallel planes.

There are complicating factors in our perception of this figure. Both assumptions of viewpoint and of

occlusion are involved, as readily demonstrated by inverting die figure. A paradoxical depth impression may

arise by these assumptions being brought into conflict. If the viewpoint is assumed to be such that distance to

the surface increases as one scans from bottom to top (as is almost always true in outdoor scenes) then the top

of the inverted figure should be farther than the bottom. contrary to that which is indicated by occlusion (the

central peak appears occluded by the tipper portion, and to occlude the lower portion, thereby implying that

the top of the figure is near than the bottom). The paradox may be resolved by imaginging that the top is

farther (as if the surface hangs downward from the ceiling) whereupon the figure is seen as consistent in

depth.

In addition to the influences of viewpoint assumptions and of occlusion, our interpretation of contours

may involve assumptions of perspective. Figure 21(1 appears to be a tunnel in perspective projection, wherein

the circles are seemingly taken to le of'equal diameter in 3-1). Figure 21b has two interpretations, a flattened

ttnnel (again a perspective interpretation) or it flat disk such as a phonograph record (an orthographic

interpretation).
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Figure 20. An example of the famiijar depiction of at runction of two variables z fjx.y) ats the orthographic
projection of thc cuirves defined by by holding cither x o1. y constant 11i1r VAriOUS VAIlueS and continuously
varying the other variable. '['herc are complicating factors in our perception ol this figure. Assuimptions of
viewpoint and of occlusion are involved. ats readily dcemonstrated by iniverhing thc figure. A paradoxical depth
impression may arise by these assumptionls being brought into conflict. If (he x iewf)int is assulmed to be such
that distance to thc stirfce increases as one scans front bottomn to top (ats is almost always itue in outdoor
scenes) then dhe top of the inverted figure should be lirthcr than the bottom. contrary to that which is
indicated hy occlusion (the central peak appears occluded by the uipper portion. and to occlude dic lower
portion. tlherchy implying that tile top of the fligure is near than dhe bottom). [he paradox m~ay he resolved by
imagining that thie top is far11ther (ats iftic surfitce hangs downward from the ceiling) whereuplon thle figure is
seen ats consistent in depth.

WL
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Given these examples of o)Lr 3-1) interpretation of'surface conltours we flow turn to address the problem of
constraining thcir inlterpretationl. First, we will examine a decomposition of die problem into two steps, each
of which must be constrained. Constraints for each stcp are then introduced, and their validity discussed.
Discussion of how these constraints arc computationally useful is given in section 4.

!kjIJ
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Figure 21. In u. which wc interpret as a tunnel in perspctlive projection, thc circles arc apparcntly assumecd (o
hc of equal diamecter in 3-I ). (A reversal cauIses the Figure to appear ats at cone protruding fromn the page.) In b
there are two itntcrpretations. at flattened turicl or- it flat disk such ats at phonograph record.
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2. TIHE CONSTRAINTS

In the following discussion a surface will be denoted by ., a contour gcncrator by r, and the projection of r
from Niewpoint V will be tie contour Cv (sec figure 22). (When the viewpoint is not discussed, the contour

will be referred to simply as C.)

A surface contour in the image is the projection of a contour generator r lying on a surface 1; neither the

shape of r nor Y. is known a priori. Note that the surface contour C is completely detcrmined by the 3-D

locus of its generator r in space relative to the viewer, regardless of the orientation of the surface on which r
lies so long as the surface allows r to be continuously visible along its length. This is an important-point. We

want to infer the shape of the surface Z from the shape of the surface contour C, but in fact C is not a

function of the shape X: C is only a function of r. In order to infer the shape of X, the relationship between

r and Z must be constrained. Likewise, to infer r from C. the relationship between r and C must be

constrained. The decomposition that is suggested, therefore, involves two stages:

(a) inferring the shape of the contour generator in 3-space (C =: F) then

(b) determining how the surface lies under the contour generator (r =' z).

This can be thought of as (a) bending a wire in 3-space so that it appears to the viewer as does the contour in

the image, then (b) gluing a ribbon along the wire to represent the strip of surface that lies directly under the

contour generator. In these terms, we see that infinitely many bendings are possible that would appear

identical from the given viewpoint, and the ribbon may twist arbitrarily along the wire. These two aspects of

the problem are distinct.
This characterization applies equally to the problem of inferring surface shape from multiple surface

contours {Ci} in the image, such as those in figure 13. "Fhc geometrical arrangement of {Ci}, particularly if

they arc parallel. may constrain both stages I and II (section 4.2.2). Note that the appearance of figure 13 may

lead one to suspect that parallelism uniquely constrains the surface, but the image is in orthographic

projection and significantly different surfaces may project to the same image -- the separation in depth

between the contour generators on the surface is not restricted.2 Thus even in the case of multiple parallel

contours, the surface interpretation process must be constrained, and that constraint is naturally described in

terms of tie above two stages.

This decomposition provides a framework for applying constraints to the problem of inferring Z from C.

The constraints necessary for stage I involve projective geometry, for the problem is naturally one of

"deprojecting" from the image curve to the curve in space. The constraints necessary for stage II do not

involve projective geometry -- they do not depend on ie particular viewpoint. Rather they involve intrinsic

I The projcction is assumed orthographic. i e.. the contour generator is assumed small compared to its viewing distance. The
persptli e distorlions otherwise ihduced in its projection would he iifeasihle to diffcreitiate from those induced by slight twisting along
its length. Notw lirthcr lhat the informal tern "'inmage platie" will hc used. allhough the relinal projection is more closcly approximated
by spherical projection.

2. In Iact, one constenisurfacc solution is gixen immedialel) by the sheet of pper on which figure 13 is prinled -- lhe prllel conlour
generators would be the ink on the page.

__el
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Figure 22. The orthographic projection of conilour gefleralo r from viewpoint V is C,. TIhc curvc C, is
termed an occluding conilour if it is an cdgc of the silhouectte of an object from viewpoint V. In particular, if
the line of sight julst grams thc surf.-tce along r theni the curve C, is also at lan genlial conlour. Thei riage curve
C, is tcrmced at surjic conlour if it is not at tangential contour.
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gcometry, specifically the relationship between the curve on the surface and the surface itself.

2.1 Sonic geometrical concepts

lI'is section reviews some concepts that are necessary for discussing the relation between a curve on a surface

and the underlying surface itself. I shall review the notions of Gaussian curvature, lines of curvature,

developable surfaces and cylinders, asymptotic curves, and geodesics (c.f. [I filbcrt & Cohn-Vossen, 1952!).
To introduce Gaussian curvature, consider the family of normal sections at some point of a smooth surface,

i.e., tie contours that result from sections that contain the surface normal at that point. The various section
contours through that point usually vary in curvature, with greatest and least curvature occurring at two

principal directions (except when the curvature is constant for all directions, is with a sphere). An important
property of the two principal directions is that they are mutually orthogonal at every point on the smooth

surface.
The Gaussian curvature at a point is the product of the greatest and least curvatures. The Gaussian

curvature may be positive, negative, or zero, and for an arbitrary surface may var) continuously across the
surface. For example, the curvature is positive on a smooth pebble, negative on a saddle surface, and zero on
a cylinder (defined momentarily).

A line of greaiesi (or leasi) curvature is a curve whose tangent everywhere coincides with one of the two
principal directions. Important examples are the cross sections and meridians of surfaces of revolution (which

of these is the line of greatest curvature depends on the surface shape).
A developable surjace is a surface with zero Gaussian curvature everywhere (i.e.. the curvature in at least

one of the principal directions vanishes). Thus the lines of least curvature are straight lines on a developable
surface. Examples of developable surfaces arc planes. cylinders, and helicoids. Informally, they correspond

to the class of surfaces that may be made by twisting and curling a sheet of paper.
A cylinder is a developable surface where the lines of least curvature arc parallel. Cylinders may be formed

by curling a sheet without torsion -- it may be rolled into a tube or be rippled like a hanging curtain. It is
useful to think of a cylinder as a one-dimensional surface.

An asymiwptotic curve is a locus of points on the surface where the Gaussian curvature is zero. By definition,
all curves on developable surfaces are asymptotic. On the other hand, surfaces with everywhere positive
Gaussian curvature (such as a sphere) have no asymptotic curves. And surfaces of negative Gaussian
curvature must have asymptotic curves, since the principle curvatures are of opposite sign and for some
direction between te principle directions at each point on the surface the curvature must vanish.

Finally, a geodesic, usually defined as the shortest path between two points oil a surface, is also a curve
whose principal nonmal' everywhere coincides with the surface normal. Importantly. the lines of greatest and

least curvature on a cylinder are geodesics.

I Ihe principal nomial to a planar curve is the perpcndicular to the tangent to the curve and lies in the plaiie of the curve. Ihe
principal normal to a curve with horsiou. smiilarl.. is 1prpc.idicillar to the taligel htll lies ill the osculitig plale or the curve at that
point (where tic oscul;ating plane i. dclined by two succesIve tanpentls al the g iueln point). Note that we will ofteni rcstlit curves to bc
planar, 4 Fisiig the plane 01 a ge xlesic immiediltcl) fixes the normal to the s'urface

.26
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2.2 What constraints might be useful?

We now introduce some constraints that allow solutions to steps I and II. [hey are proided by restricting the

geometrical properties of the contour generators, and restricting the relationship between the contour

generators and the surface on which they lie. This section only tabulatcs the various geometric restrictions.

Next, in section 3 we will discuss die validity of assuming that these restrictions hold in natural situations

involving actual contour generators on physical surfaces and, in section 4, we will describe how the restrictions

constrain the shape-from-contour analysis.

2.2.1 Constraints on the contour generator

With regard to step 1, the 3-D shape of a contour generator r (corresponding to a given surface contour C)

may be recovered if restrictions are imposed on r and on the viewing position. Some of these restrictions are

listed below.

(a) general position, the viewpoint is not misleading. This allows one to infer
properties of the contour generator F on the basis of the properties of its image,
the surface contour C. For instance, if C is smooth then P is smooth; if {Ci} are

parallel then I ri} are parallel.

(b) planarily, F is planar. This reduces the problem of determining r to that of
determining the orientation of the plane f containing F. 'ilie plane II is
constrained by the following.

(c) symmetry. Given planarity and general position, if C presents evidence of
symmetry then r is symmetric, and the orientation of [I must be consistent with r
being symmetric.

(d) minimum curvature variation. Given planarity and general position, if the
curvature of I is roughly constant then the variations in curvature apparent in C
may be attributed to foreshortening. Consequently that plane fl that minimizes
the variation in curvature of r would solve r.

2.2.2 Constraints on the relation heicecn contour generator and surface

Given the contour generator F. the surfice Z may be solved if the relationship betwecn r and X is restricted.

If I' is planar and lies on some plane Ii then the relationship between die contour generator and the surface is

naturally described in terms of the angle between I and the tangent plane to Z for points along r. '[he

relation between the surface and the contour generator is quite simple if we make the strong restriction that

this angle is constant along the length of 1'. That is to say, the plane containing the contour generator meets

the surface at a constant angle. The two cases we will consider is when die angle is w/2 and zero.

If the angle between 11 and the tangent plane to X is V/2, then:

r is gcothdsic. The surface normal coincides with the principal normal to r for
points along r.

If the angle between f and [he tangent plane to E is /ero, then:
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r is aSi',lplalic. The surface normal coincides with the normal to fl for points
along r, and furthennore, the Gaussian curvature of X for points along r is zero.

Ilese two solutions, geodesic and asymptotic, form the basis for constraining the relation between the

contour generator and the surface. Given general position and planarity, we also have an important

restriction on X in the case of parallel surface contours {Ci}:

{r} are parallel lines of curvature and I is a cylinder. Furthermore, if the contour
generators are geodesics, they are lines of greatest curvaturc: if asymptotics, the
surface degenerates to be planar.

And finally, a derivative of the cylinder restriction may apply in the case of a single surface contour, if the

corresponding contour generator is a line of greatest curvature and the surface is cylindrical, by the following

restriction:

X is opaque. The image of an individual line of greatest curvature on a cylinder
allows some restriction on the shape of the surface.

Surface contours are often weak sources of information about the surface shape when analyzed individually,

primarily because it is difficult to deduce the shape of the contour generators on an individual basis. The

Smore important case probably involves the geodesic restriction on a collection of parallel contours taken

together. Then the parallelism may be used to advantage in constraining the shape of both the contour

generators and the surface on which they lie. Before pursuing the utility of these constraints any further, it is

important to gain some insight into their validity.

_____Jamb.
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3. WHEN ARE T[iLE CONSTRAINTS VALID?

I)o the contour generators in ie real world meet these restrictions? In some situations it is valid to assume
that a contour generator is, say, planar and geodesic, as we shall see. But there are also instances where the
same assumptions are not valid -- the real world does not necessarily constrain the curves on surfaces to

comply with any of the various ideal geometries. How often arc die restrictions met in actuality? °I'hi- is the
issue of "ecological validity" discussed by Gib. n, Brunswick, and others (c.f. [Gibson, 1950; Postman &
Tolman, 19591). We start with considering the validity of assuming general position.

3.1 General position

General position implies that the viewpoint is representative -- that the image taken from this position does
not mislead us by accidental alignments. Two examples of viewpoints that are not general position may be

imagined for a cube: In one instance the cube is positioned so that its silhouette is a regilar hexigon. Equally
misleading would be a cube positioned so that its silhouette is a perfect square.

When the assumption of general position is correct we may make valid deductions, in particular.

deductions about contour generators. Two examples of these deductions %hich we shall pursue are the
following: If a surface contour is smooth, the corresponding contour generator is smooth, and if surface

contolrs are parallel, their contour generators are also parallel.
The contour generator need not be smooth simply because its projection is smooth: a discontinuity in

tangent along a contcur generator might be hidden from the given viewpoint -- the plane containing the

discontinuity might also contain the line of sight so that the discontinuity would not be apparent. But if the
distribution of spatial orientations of planes relative to the viewer is uniform, the likelihood of such an
accidental alignment would be insignificant. Similarly, some non-parallel curves may be constructed such
that they appear parallel from certain viewpoints, but the probability of achieving a viewing position that

allows this alignment becomes insignificant as the curves diverge from parallelism in 3-space.

3.2 Geometrical properties of structural contours

In general, die geometry of structural contours is not strongly constrained because the processes that cause
them iare Naried and often random. There are. however, sorme types of physical markings that are well r

I: clc.irest exmiples. perhaps. involve synthetic objects. With reference to the objects about you, observe

oImiith tlrllices of man-made objects are usually comprised of either (a) planar surfaces, (b) singly
t0 ,kr in particular cylinders, or (c) surfaces of revolution. In general. the boundaries between

d n.ir prmlrily for reasons of fabrication. Again. because of convenience in manufacturing as

,,d 'Ulices ,rc usutlly sliced by normal sections. Thus joints between surfaces of an object

cii ,muitflc c\pcclafion that the instances of actual parallelism, straightncss. and so firh, arc
' 'l

A
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comprise geodesics on one or the other of the joining surfaces. "I'le end of a "tin can" would be an example.
Surtiace markings other than scams or joints are often geodesics as well, pdrticular when the markings are on
cylinders, When the markings arc also planar. they additionally constitute lines of curvature. Ibis

combination of properties, planarity and gcodcesi:, is particularly common.
Markings on surfaces of revolution usually follow either the axis or some cross section. Hence these scams,

edges, ridges, and pigmentation markings are lines of curvature, geodesic, and planar. (A notable exception
can be found in the spiral seams on cardboard tubes. They are geodesic but nonplanar.)

Flexible surfaces, both natural and synthetic, tend to be noncompressible hence developable, and are

therefore cylinders when not subjected to torsion. Wrinkles produced by compression tend to be lines of
curvature.

Many biological forms may be approximated as being composed of generalized cones [Marr, 1977a]. These
surfaces often have markings that follow cross sections and meridians on the surface, and therefore are also
lines of curvature, geodesic, and planar. Biological objects are often bilaterally symmetric, such as leaves.
'heir axes of symmetry are often evidenced by physical markings, and symmetric patterns are usually

arranged across that axis. The symmetry may be used to advantage to restrict the possible orientations that

would be consistent with the 3-D form being symmetric.

3.3 Geometrical properties of illumination contours

3.3.1 Cast shadows
The edge of a shadow cast across a surface is a fortuitous source of information about surface shape. We are
familiar with the effectiveness of the shadow a fence post cast upon snow in indicating the undulations in the
surface. Hut to accurately analyze the surface from the image of the cast shadow, a number of variables must
be known. There are essentially two projections involved: the projection of the shadow onto the surface (the
edge of which becomes the contour generator r) and the subsequent projection of r onto the image plane (as
contour C). Thus the contour C in the image depends on (a) the shape of the physical shadow-casting edge,
(b) the position of the light source -- together they specify the bundle of rays that will be cast upon the surface
-- and (c) the position of the shadow-casting edge relative to the surface, and finally (d) the shape of the

surface itself.

To appreciate the complexity of shadow interpretation in the general case, consider again the image of a
tree trunk shadow cast on snow. Suppose there is a kink along the shadow edge. Is that due to a sharp
depression in the snow (for instance, is the shadow falling across a footprint) or is it due to a kink in the tree
(and the snow itself is flat)? If analyzing the shape of the surface is attempted prior to knowing the above
factors, some assumptions are necessary. In the approach suggested here, the assumptions are two:

the contour generator is phmar and geodesic.

4 In terms of this example, tie above translate into assuming the edge casting the shadow is straight and that its

profile (detennined by tie stin position and the trunk) intersects the ground at a right angle. 'len if there is
an apparent kink in the shadow edge il will he attributed to the surfadce. not to the tree. (Incidentally, it is
informative to observe the shadow cast on the flat groond by a young tree which has a crooked trunk. The
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ground often appears to undulate according to the curves in the cast shadow.)

So we should discuss how the planarity and geodesic restrictions help the shape analysis. First note that if

the shadow-casting edge is straight the contour generator (the shadow edge cast across the surface) constitu!.ts

a planar section of that surface. That is. the contour generator lies in the plane defined by the straight

shadow-casting edge and the point light source. In this case, we may already determine qualitative

infonnation about the surface shape. Given general position, if the contour in the image corresponding to the

shadow edge is straight, the surface is flat- if it is curved, the surface is curved. To determine more

quantitative shape information requires that (a) the relation between the contour generator r and the surface

be known, and (b) the orientation of the plane of F be known. Hence we introduce the geodesic assumption.

That is to say, the shadow edge across the surface is assumed to be a normal section of the surface. Weak

justification for this assumption derives from considering shadows cast on the ground: Since shadow-casting

edges are usually vertical (e.g., tree trunks, building edges, telephone poles, fences), the edge of the shadow
amounts to a normal section, i.e., the shadow edge is roughly geodesic.

When do multiple, parallel sections occur in real situations? We may disregard the shadow of a picket

fence as being artificial, but notice that two parallel sections would result from the shadow edges cast on some

surface by a relatively narrow object such as a tree trnk. Another possibility concerns motion: successive
views of a moving shadow edge. Successive positions of a shadow edge that sweeps across a surface in

translatory motion would constitute parallel sections of the surface. )oes the visual system take advantage of
this fact? Is our ability to analyze parallel surface contours a derivative of an ability to analyze moving
shadows? This hypothesis would be supported if we could perceive a surface defined only by a single mo\ing

contour that scans across an otherwise invisible surface, In fact, this ability may be demonstrated by a motion

sequence of a single contour on a CRT, where each frame presents only a single curve. Note that the moving

curve might be interpreted simply as a flexible wire that bends as it translates, or more literally, as a curve in

the plane of the screen that changes shape as it moves. But, in fact, there are instances when we interpret the

moving contour as a shadow edge sweeping across a 3-1) surface (e.g., when the individual curves in figure 13
are presented in succession).

3.3.2 Specular reflections: gloss contours and highlights

Gloss contours, like shadows, are fortuitous, i.e., uscli,. but not necessarily present. They are present only
tinder directional lighting conditions on specular surfaces, when the surface normal lies in the plane delined

by the point light source, surface point, and viewer and bisects the angle defined by that configuration. 'Ibis
configuration (the specuhrio, contditon) is rarely met with planar surfaces but is commonplace for curved

surfaces, especially when viewed indoors with multiple lights illuminating the surface. The specularity

condition may be met only at an isolated point, causing a highlight, or met along a curve, causing a gloss

Coillour.

For a doubly curved pach of surface the specularity condition is met at only a point, if at all. and would

only produce a highlight in the image. A gloss contour cannot occur on a surface with nontero Gaussian

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ i
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I

curvature in orthographic projection given a point light source. 1 For a gloss contour to occur -- for the
specularity to appear not as a point but as a curve -- the specularity condition must be met along a continuous

curve on the surface. With orthographic projection and distant light source it is necessary that the contour

generator (the locus along which the specularity condition is met) be planar. That plane corresponds to the
tangent plane to the surface along the contour generator. Now two results in differential geometry are useful:

A curve is asymptotic if it lies in a plane everywhere tangent to the surface along
the curve.

If the angle between a planar curve and the tangent plane of the surface is
constant, then that curve is a line of curvature.

Using the above, we may conclude that the curve across the surface that corresponds to the gloss contour is
asymptotic and a line of (least) curvature. Since the asymptotic curve follows a path of zero Gaussian
curvature, we have information about the intrinsic geometry in the vicinity. Of importance is the following:

If the gloss contour is curved, the surface is planar. '[llis is true in orthographic
projection with distant light source. (With nearby objects and perhaps nearby
illumination, tie surface would not be strictly planar. But in general the surface
curvature measured along the contour generator will be small, much less than that
measured across the contour generator.)

If the gloss contour is straight, the surface is cylindrical when either (a) gloss
contours from successive viewpoints are parallel, or (b) if there are multiple light
sources jas is common in interior scenes) and multiple gloss contours are parallel.

h'lese deductions hold subject to general position, of course.

'Tlius the specular reflections in the image can tell us not only something of the reflectance properties of
the surface, that the surface is specular [Beck, 19721, but also something about the surface shape, namely, that

the Gaussian curvature is nonzero in the vicinity of a highlight and zero in the vicinity of a gloss contour. The

shape of the gloss contour also specifics the intrinsic shape of the developable surface.2 This does not strictly

hold when the surfaces or light sources are near by, and especially when the light comes from an extended,

rather than a point, source. Nonetheless, it is instructive to observe the gloss contours on specular surfaces --

they almost invariably follow the least curvature paths on actual surfaces.

3.3.3 Shading contours and terminators

The previous discussion assumes bright, directional light sources. Ilowever the specular surface not only

reflects the light sources as a highlight or gloss contour, but also acts as a mirror -- the various glossy

I In real situations we ha e two was in which gioiss contours ni. arise. [irsi, extended light sources (such a; fluorescent lights, bright
windows) will extcnd point reflections into images of the light sources. which atppear ; gloss contours if compressed because the two
principle curu;itures are very differewt Sccondly, in perspective prtcclior we iia* have that as the lint: of sight sweps acrom the .irface
(the piojection is not parallel) the alte between the line f ght and the sur .face stays relali el% constant due to curvatlure of the surface.
such as when viewing the inside stirAce of a cup fioni nearby. thbe if the specularit.N condition is int at one pon~il in that vicinity, it
would he met along a lcus. ilus in perlspecti\e projection highlights may spread itnto ikws contours as well.

2. I iirthennotc. the surface normal coincides with the normal to the ptaic containing the glors contour. but to utili/e thai fact the 3-I)
curve corresi iding to the gltK contour itlitst he detlrntined Ihat is the topic of section 4. I.
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reflections comprise an image of the surrounds distorted by the geometry of the surface. 'Ihis is the extreme

case of mutual illumination which inakes "shape from ihading" difficult. The incident illumination is an

intrictably complex function of the surrounds. But without understanding this illumination, the shape of the

surlace cannot be solved from ie shading.

With the addition of a matte component, the fine details in the reflections are lost, and the gloss contours

become less definite. In the limit case of a I.ambertian surface there is no specular component and the

shading is only a function of the surface orientation relative to the various sources of illumination. For this

reason one would expect that the surface orientation would be computed from shading most feasibly,

however the illumination is still determined by the surrounds and is still quite unconstrained. Consequently,

the computation of shape from shading (where "shape" means local surface orientation) is quite difficult.

Most surfaces are neither totally matte nor glossy so their images present weak highlights and gloss

contours -- the distinction between shading and gloss becomes vague. One may postulate, therefore, that

shading only constrains the local surface geometry in the manner just described -- the local surface orientation

is not computed directly from the shading. Instead, the local surface orientation would be smoothly

interpolated between those tangential contours and surface contours along which surface orientation can be

solved. The interpolation would be subject to the constraint on intrinsic surface geometry provided by the
gloss and shading contours. This constraint is naturally described in terms of Gaussian curvature: A highlight

indicates positive Gaussian curvature in the vicinity. Similarly, a gloss contour indicates a locus of zero

Gaussian curvature.
Constraint on intrinsic geometry is also provided by the sh:.ding contours known as terninators, surface

contours which correspond to paths on the surface along which the light grazes the surface so that points on
one side of the contour are illuminated, points on the other side are in shadow. (A terminator is analogous to

a tangential contour seen from the light source position.) A strong restriction on the surface shape is provided
wherever the terminator is straight in the image: the surface is locally developable (again, assuming general

position) and therefore the terminator indicates a locus of zero Gaussian curvature.
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4. I1OW TIlE CONSTRAINTS ARE USEFUL

Thus far we have discussed a number orgeomctrical properties that may bc useful in constraining the analysis

of shape from surface contours. Instances in which these properties hold in real scenes were described. What

remains is to become more specific about why these properties are computationally useful.

4.1 The relation between a surrace contour and its contour generator

The current problem is to determine the contour generator r in 3-space on the basis of its projection, the

surface contour C. The projection will be restricted to be orthographic. This restriction would hold whenever

the dimensions of the curve in space are small relative to the distance from the curve to the viewer.

Orthographic projection is linear, hence some useful geometrical properties are preserved, notably

parallelism.
Now, in detennining the shape of contour generators in 3-space we are confronted with a problem

wherever the tangent to the contour (its slope) is discontinuous: Is that discontinuity the projection of a

discontinuity in tangent along the contour generator. or is the discontinuity due to the adjoining of distinct

contour generators on the surface? Since this cannot be answered locally without a priori knowledge of the

specific surface, we follow the principle of least commitment [Marr, 1977a] and partition the surface contours
in an image into their smooth segments.

4.1.1 General position

A number of constraints will be consequences of assuming general position -- that the viewpoint is such that

images from nearby viewpoints would not present significant differences in the geometry of the projected

contours. By this we rule out viewpoints that cause accidental alignments which mislead. For -itstance. if a

contour C is straight from viewpoint V, then assuming general position, it would be straight from a similar
viewpoint -- it is not the case that the contour generator r is curved in a plane but that plane is viewed "edge

on" so that the image of r is foreshortened into a straight line. General position allows one to infer properties

of contour generators on the basis of their images, such as smoothness, continuity. and parallelism.

Our first application of general position is as follows. Since the contour C is smooth and continuous, F is

smooth and continuous.' Furthernore, in general position, nearby and distinct points on r project to nearby

and distinct point on C. That is, there are no kinks or loops in I' hidden by the particular viewpoint. In short,

assuming general position allows us to consider r as a smooth wire in 3-space. Now we consider additional

constraints which allow us to determine its shape.

4.1.2 'The planarity restriction

If the contour generator r is constraiined to be planar. the shape of P would be completely determined by the

equation of the plane containing the curve given its orthographic projection C. Hence the planarity

I. We would like to say sorncthing :.bout ihe smoothncss of the surface dircclI) under the conltour generator on the basis of the surface
contour being sm(th. bul unf()ntmatcly that does not follow front general IpKisition as stated 'th snooth contour gencrllor i1ay lie
along a sharp ridge, for insiance.

-- --.:., ...
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restriction reduces the problem of determining r to that of finding the spatial orientation of the plane fl

!containing r.

Since the contour generator r is determined once !n is specified, one approach is to in pose an a priori

choice of fl, then examine the shape of r that results. That is. one assumes a particular spatil orientation for

the plane containing the contour generator. But there do not appear to be any reasonable choices for H,

except for the ground plane, i.e.. the horizontal plane defined by gravity. However it is not feasible to assume

that all surface contours are projections of horizontal contour generators.

Alternatively, one may make a priori assumptions about the shape of r in the same spirit as assuming that
r is planar. 1Then 1 would be a consequence of C and those restrictions on r. What restrictions can be

reasonably placed on r, and how are those restrictions to be phrased? I shall consider two -- symmetry and

minimum curvature variation.

4.1.3 Symmetry

Bilateral symmetry is commonly found in nature and usually preserved, at least indirectly, in orthographic

projection. We are interested in symmetry, for evidence of symmetry in an image will provide constraint on

the shape of F. We start with the usual definition of a bilaterally symmetric, planar curve as comprising two

loci of points that are reflections of each other across a straight line, the axis of symmetry (figure 23a). The

symmetric points are equidistant across the axis, the line connecting any two symmetric points is

perpendicular to the axis, and all such lines are therefore parallel.

In any orthographic projection of this curve, the image of symmetric points are equidistant across the

image of the axis, the correspondence lines connecting those points are parallel, but the correspondence lines

are no longer perpendicular to the imaf of the axis in general (figure 23b). This configuration has been aptly

termed "skewed symmetry" by Kanade and Kender [1979]. If a unique line can be found that behaves, in this

sense, as the image of an axis of symmetry, then by general position we will assume that the planar curve in

space is bilaterally symmetric. (Refer back to figure 19.) '[hat is, we have criteria for detecting bilateral

symmetry. When these criteria are satisfied in an image we may assume that it is not coincidental, that it

would also be satisfied in an image taken from a different viewpoint -- hence due to actual symmetry. The

problem that remains is to detect the images of symmetric pairs of points.

Orthographic projection is linear, hence a number of properties are preserved by the transformation

including midpoints. poins of inflection, and convexity and concavity [Marr. 1977a]. Marr has shown, in the

context of finding the axes of generalized cones, that axial symmetry can be efficiently detected by the

qualitative syinueiry between convex and concave segments. rather than on a point-by-point basis. This

extends to the detection of bilateral symmetry, where the correspondence lines between qualitatively

symmetric segments would be parallel. The line defined by the midpoints of the correspondence lines would

be the image of the axis of symmetry.

Returning to the problem of constraining the shape of the contour generator, the symmetry detected in C

constrains r to be symmetric and this in turn constrains the orientation of the plane I1 containing r.

Specifically, 11 must be oriented relative to the viewer such that, given C. r would be symmetric if lying on I1.

This constraint is simply expressed in terms of the corresponlence angle, the angle in the image between

the correspondence line and the projected axis of symmetry (figure 23b). Since the correspondence angle is
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Figuirc 23. 'lIhe bilateral symmetry in a can be described in terms oft co rrcspondencc lines which connect
symnictric po ints lying cquidistant from al stra|ight linc. the axis of syrmetry. :l'hc parallel ctrrespondence
lincs atrc pcrpcndicttlar to the axis o~f symmctry. In b the co~rrespondcncc liucs co nnecting qualitatively

4symmectric segmenis o~f thc cuirve are allso parallel but nmt~kc an obliquc angicefi with the atxis o)f symmetry.
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tie image of a right angle on the surface, the magnitude of the correspondence angle P constrains the possible
spatial orientations for the tangent plane at that point (see figurc 24).

In short, r is presumed symmetric if an axis of symmetry can be reconstructed from the midpoints of
parallel correspondence lines, where the correspondence lines are constructed between qualitatively

symmetric segments of C. The correspondence angle then constrains the spatial orientation of the plane

containing r.

4.1.4 Minimum curvature variation

"ihe curvature of C encodes information about the orientation in space of the contour generator r, if r is
planar and some other restrictions hold. Witkin [19791 has shown that the orientation of the plane fl

containing r may be estimated on the basis of the curvature along C if we assume that systematic variations in
the curvature that resemble foreshortening are due to foreshortening. Then one may choose that plane II that
maximally accounts for the variation in curvature in terms of foreshortening. The following assumptions are
sufficient to allow this analysis:

(a) the possible surface orientations of 1 are equally likely,

(b) the tangents to the contour generator are arbitrarily aligned relative to the
viewer (they are independent of slant a and tilt T), and I
(c) the curvature along the contour generator is independent of U, r, and the
orientation relative to the viewer of the tangent to the contour generator r.

The constraint on F that results is roughly equivalent to assuming that the variation in curvature along F is
minimum [Witkin. 1979]. Then the variation in curvature along its projection C may be attributed primarily

to foreshortening, whereupon the degree of foreshortening -- hence the orientation of the plane f1 containing
r -- may be estimated. To introduce this, consider the case when r is a circle, a planar curve with constant

curvature. The orthographic projection C is an ellipse: the curvature along tie ellipse varies according to the
foreshortening of the corresponding scgment of the circle. One may derive from the variance in curvature an

estimate of tie orientation of the plane containing r.
This constraint has been phrased in terms of minimum curvature variation, but Witkin describes it more

generally as a problem of signal detection. The "waveform" that we consider is the contour in the image

(parameterized in terms of contour curvature). The curvature at any point on the contour consists of two

components, one being the curvature of the contour generator at each corresponding point, the other being a
.projective component" which increases or decreases the apparent curvature according to the orientation of
the given segment of the contour generator relative to the viewer (in the circle example, where the tangent lies
parallel to the image plane, the curvature on the ellipse is minimum; where the tangent to the circle is

oriented away from the viewer the curvature is greatest). The curvature of the contour generator is treated as

noise: the projective component is the signal. Since the projection is orthographic and the contour generator

is planar, the projective component will be regular.

The prohlem of determining the orientation of the plane containing r may be recast as that of estimating

the amplitude and phase of a signal of known waveforn (the projective component) in the presence of noise
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7/2

0 7r/2 7r

Figure 24. The oblique angle 1 formed by the projection of a right angle provides some constraint on both
the slant a and tilt r components ofsurface orientation relative to die viewer. The possible values ofslant and
tilt are shown its cross-hatched for correspondence angle Pi varying from v/2 to w. 'lilt r is measured relative
o one of die contour% in the image, and varies from parallel (T = 0) to perpendicular (r = w/2).

EL
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(the unknown shape of F). The problem can then be solved by seeking to account for as much as possible of

the variance in the surface Contour in terns of the projective component. The constraint stems from the fact

that the processes that determine the shape of contour generators on actual surfaces usually do not impose the

same kind of s)stematic regularity as that imposed by orthographic projection.

4.2 The relationship between a contour generator and the surrace

Given the contour generator r is a planar 3-1) curve, how does the surface I lie under r? In terms of the wire

and ribbon, a primary question concerns whether the ribbon may twist along the wire. More formally, if the

plane containing F is 1, does the angle between . and H vary along r?

A result in differential geometry is that given a curve F defined by the intersection of a plane !1 and a

surface 1, if the angle between X and I is constant along F, F is a line of curvature (see, e.g., [O'Neill, 1966,

p. 224]). Thus if the contour generator is planar, and that plane intersects the surface with a constant angle,

the contour generator is a line of curvature. The next issue is to determine the angle between 11 and 1.

4.2.1 The geodesic and asymptotic restrictions
If the plane I1 containing the contour generator F is perpendicular to X, i.e., F is a normal section, then F is

geodesic. Consequently the surface normal along [ everywhere coincides with the principal normal to F. In

essence. the contour generator follows a path on the surface which locally indicates where the greatest

curvature occurs. The binormal to the contour generator. being perpendicular to both the principal normal
and the tangent, coincides with the direction of least curvaturc Iowever all such binormals are parallel, for

the tangent and normal along F only rotate in the plane 'l. Consequently all lines of least curvature are

parallel: equivalently, the strip of surface under the contour generator is a cylinder.

The previous discussion considered the case where the contour generator is geodesic- where the angle

between I and Y is wt/2. If that angle is everywhere zero. then f1 coincides with the tangent plane of 2 and

the surface nonnal along I coincides with the normal to [1. As mentioned earlier if a curve lies in a plane

everywhcre tangent to the surface along the curve, that curve is asymptotic, i.e., a locus of points of zero

Gaussian curvature. The importance of the asymptotic restriction is found in gloss contours. TIhe contour

generators corresponding to gloss contours in the image correspond to asymptotic curves on the surface.
I lence where gloss contours appear we know that the surlace is locally developable (likewise. where point

specularitics occur we also know thalt the surface must b doubly curved). 'To some extent we may further

understand the surface geometry simply on the basis of the shape of the contour in the image without

determining the particular 3-1) shape of its contour generator. If the contour is a straight line in the image we

cannot tell much, for the surface may be either cylindrical or twisting (like a spiraling piece of paper). But if it

is any smooth curve in the image the surface is roughly planar since the contour generator is restricted to be

planar and asymptotic.

4.2.2 Parallelism

'1lie discussion thus far has concerned the analysis of surface shape from a single surface contour. 'Ihis

analysis requires that the contour generator I' may he determined from its inage. however the constraint

aflorded by planarity, general position, symmetry, and constant curVa(ture will not always allow a strong
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detennination of r. It is perhaps not coincidental that, in fact, our perception of surface shape from a single,
uniamiliar contour is weak when compared to the vivid impression afforded by multiple, parallel contours

(fi~ures 13 and 20). 'T7he basis for the apparently greater constraint from parallel contours will now be
dlisoivscd.

If surface contours are parallel in the image, then by the of gencral position, their contour generators are

parallel. The fundamental issue now concerns the behavior of the surface between the contour generators.

In the absence of independent sources of information about the surface such as shading or texture we must

make some a priori assumption about the nature of the surface between the contour generators. A

conservative assumption would be that the surface extends in a "simple manner" between them. This can be
formalized by a second form of general position: that the particular positions of the contour generators on the

surface are not critical, that if shifted slightly, the contour generators would project qualitatively the same.

This is equivalent to assuming that the surface is a cylinder between the contour generators.
We now use the geodesic-asymptotic restrictions from the previous section, and consider two

interpretations for the cylindrical surface: Either the surface is (a) curved and the contour generators are

parallel geodesics, or (b) flat and the contour generators are asymptotic curves. To aid in visualizing these two

cases, compare figure 13 (geodesic interpretation) and figure 25 (asymptotic interpretation). Note that in the
latter case of asymptotic curves, the parallelism does not provide additional constraint on the surface solution
-- the contour generators lie in the same plane. Nor does the shape of each contour generator in the plane; it

is as if the curves are merely arrayed on a flat surface. The interpretation of parallel contour generators as
geodesics, however, constrains both the local surface orientation and the shape of the contour generators.

4.2.3 Computing parallel correspondence

Recall that the angle between the plane containing the contour generator and the surface is restricted to be

constant, hence the contour generator is a line of (greatest) curvature. Also, the lines of least curvature on a
cylinder are straight, parallel, and perpendicular to the lines greatest curvature. If a line of least curvature

were reconstructed in the image, the angle of intersection that it would make with a surface contour (a line of

greatest curvature) would be the projection of a right angle. 'lhlis angle constrains the local surface

orientation, as already demonstrated with regard to bilateral symmetry. In fact, the lines of least curvature

can be reconstructed.

In the orthographic image of a cylinder the lines of least curvature would project as straight and parallel.
and each would intersect successive surface contours at it constant angle (since the contour generators are

parallel). This is illustrated in figure 26 (where the lines of least curvature are superimposed on figure 13).
Note that we attempt to reconstruct only the projechons of the lines of least curvature. 'T'his may be achieved

by identifying points on adjacent contours whose tangents are parallel and connecting those points by straight
lines that are parallel. This may be thought of as bringing points on adjacent contours into parallel

crrcsxtidec'e. The constructed line representing the image of a line of least curvature will be termed a

correspooidene line. Note that if tie surflce conlours are straight Ir ra portion of their length (figure 27a) the

tangent to a point P on one contour may be parallel to various tangents on (lie adjacent contour, however only

one choice would result in a correspondence line that is parallel to the other correspondence lines between



Stevens - 92 - Utility of tlc constraints

IFigtrc 25. Thewconlours secm lo)be inzcerpreted is thimaiige of asymptotic cuirveson a plana;r surfaice. Note
that the surface appears flat in given this interpretation.
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Fi:gure 26. In dhe orthographic finagc of a cylindrical surface thc lines of lcast curvature projcct as straight and
parallel, and cach intersect successive surlace contou rs at a constant angle. Identifying points on adjacent
contiours Whose tangents are parallel and connecting those points with lines diat are parallel establishes
puaihi1 corrc.%pdnmk'uce one basis tbOr postulating that the underlying sutrface is a cylinder (subject to general
position).
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curvcd portions of adjacent surface contours (figure 27b).1

This correspondence is unique in general, and therefore may be used as a constructive criterion for

detecting parallelism between surface contours and for postulating that the surface is a cylinder.2

An important conscquencc of the parallel correspondcnce is that the surface orientation is necessarily

constant along the lines of least curvature (in orthographic projection, as we have been assuming). 'hus if the

surface orientation were determined along the contour, it can be simply propagated along the correspondence
lines to provide a complete, interpolated solution to the surface orientation across the cylindrical surface

between parallel surface contours.

We have seen that assuming that the contour generator r is planar and that the angle between the plane

containing r and the surface is constant along r restricts the surface under r to be a cylinder. Also, for

parallel surface contours the two forms of general position together restict the surface to be a cylinder.

Consequently, the curvature of the surface is attributed entirely to the curvature of the contour generator, that

being a line of greatest curvature.

Note that the cylinder restriction is only local, for the parallel correspondence need only be established

between adjacent surface contours, and the parallelism between reconstructed lines of least curvature is

dcfined only locally. Consequently, the cylinder restriction may be applied, for example, to the surface
contours in figures 20 and 28 where the surface may be approximated locally by patches of cylinders while the

global surface is not cylindrical.

4.2.4 Opacity

We now consider the constraint afforded by restricting the surface to be opaque. In general, opacity does not

significantly restrict the shape of the underlying surface. However the opacity restriction is important if. as

before, the contour generator is assumed to be a line of greatest curvature and the surface under the contour

generator is assumed cylindrical. In the following, a geometrical construction will be described that shows

how these restrictions constrain the range of orientations to which the parallel lines of least curvature would
project. The angle between those lines and tie tangent to the surface contour is, again, the projection of a

right angle. '[hus the opacity restriction is uscftil in constraining local surface orientation in the same manner

as skewed symmetry and parallel correspondence. 'The restriction imposed on slant and tilt as a function of

this angle is shown in figure 24.

The constraint follows from the fact that if a line of curvature is continuously visible from a given

viewpoint, so must an adjacent line of curvature. 'llis can be described geometrically in the following way:

The correspondence lines (the projections of lines of least curvature) that connect adjacent surface contours

would make no intersections with the surface contours except at their terminations. 'T'hat is, the situation in

figure 29a would be disallowed. (Note that in figure 13, where this does not arise, the surface may be

transparent nonetheless.) Now, given a single surface con:our (the image of a line of greatest curvature on a

I Selection oflihat choice may be accomplished h a local, parallel algorilhm isimilar to that in [Stevens, 1978.

2. Note that the correspondence is not unique it. for instance, the parallel surface contours are periodic. - in figure 11 One solution in
that case is to ch(xt% the parallel .slulioii which results in the shortest correspondence lines.
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Figure 27. If dhc surfacecContiours arc straight for a portion of their length, as in a. the tangent to a point P on
one Contour may hc parallcl to various talngents on thc adjacent contour. however only one choice would
result in a correspondence linc that is parallcl to thc othcr correspondcncc lines between curved portions of
adjacent con tours, as in b.
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Figure 28. Theli cylinder restriction is only local, for the parallel correspondencc nccd only be established
hetween adjacent suirface contours, and ie parallelism between reconstructed lines of' lcast curvature is
dcfined only locally. Consequently die local cylinder restriction may ic applicd to thc surface contours above
although the global surface is not cylindrical.

- -r - ~ ,'N.
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Figure 29. TIhe opacity restriction disallows thecCorrespondecelC lines (the projections of lines of least
curvature) that connect adjacent surface contours to intersect the Surface contours except at their
terminations. TIhat is. the situiation in a is disallowcd. Opacity provides some constraint on the rclation
between a contour generator and the underlying surfacc. Towards representing this constraint, we repesnt
the suirface contour by its GaLmsS map onto a scmi-circlc, as in b.

AL4
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Figure 30. The surface underlying the contour (heavy line) is assumcd to bc a cylinder, and the problem is to
determine the orientation a to which the lines of lcast Curvature would project. Tlhree examples of a arc
shown above. Ilic opacity restriction places someC constraint on a.

- 44
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Figure 31. Th'lc image of the lines of least curvature map to a single point on thc Gauss map. If opaque, that
point cannot alrcady bc occupied by thc mapping of thc surface contour. In a dhc suirface contour is a shallow
curve which maps to a small arc on thc Gauss rnap. TIhis does not strongly constrain the possible orientations
of thc correspondence lines (the projected lines of lcast curvatuire). ButI in b dlie curve covers much of the
Gauss map. hcncc the orientation of thc lincs of least curvature is strongly constrained. One choice of that
orientation is shown, and the position of an adjacent. parallel surface contour is drawn. 'Ihcl opacity
restriction then provides constraint on surface orientation by die oblique correspondcnce angle.

f4
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cylinder) we have some constraint on where an adjacent line of curvature would project, and this in turn

constrains the local surface shape.

'[his constraint is conveniently represented by the Gauss map (see, for example. Iliilbcrt & Cohn-Vossen,

19521). A Gauss map is a simple representation of the range of orientations of tangents along a curve. The

given curve is mapped to an arc on a unit semi-circle where each point on the curve maps to the point on the

semi-circle whose radius is parallel to the tangent to the curve. This is illustrated in figure 29b. Observe how

tangents at various points P map to corresponding points on the semi-circle.

The next step is to use the Gauss map to represent the range of possible orientations of the correspondence

lines. Let that orientation be a, which maps to a single point on the semi-circle (that point P whose radius has

the orientation a). In figure 30 three choices for a are shown which are consistent with the surface being

opaque. Now, the constraint that the correspondence lines not intersect the surface contours equates to the

restriction that the point P not lie on the arc of the semi-circle already covered by the surface contour. The

degree of constraint imposed by the opacity restriction depends on the surface contour. In figure 31a the

shallow contour maps to only a short arc, and the correspondence lines could have a large range of

orientations. But in figure 31b the correspondence lines are restricted to a narrow range of orientations.

Given that the correspondence lines are the projections of lines of least curvature which on a cylinder are

identically the binormals to the plane containing the lines of greatest curvature, the orientation to which the

correspondence lines projects provides us with the tilt component of surface orientation for the plane

containing the given curve. It is worthwhile to refer back to figures 15b, 16b, and 18b, which seem to be
patches of cylinders. The curves would be lines of greatest curvature, the straight lines would be lines of least

curvature. Their mutual orthogonality would explain our interpretation of them as right angles in 3-D.

4.3 Criteria governing the tangential/surface contour decision

Earlier we discussed the distinction between tangential contours (silhouette boundaries along which the line

of sight grazes the surface) and surface contours, noting that surface contours include silhouette boundaries

that are not tangential contours. Marr [1977a] has delineated properties of the silhouettes of generalized cones

(whose bc,.ndaries are tangential contours) -- surfaces whose shape can be recovered from their silhouettes.

The ni'houette of a generalized cone exhibits qualitative symmetry: where the correspondence lines

connecting symmetric segments of the contour would be perpendicular to the axis of symmetry. For instance,

the symmetric silhouette in figure 14a is generally interpreted as a vase-like object, and the contours are seen

as tangential contours.

Similarly, geometrical criteria can be given which indicate that a contour is a surface contour. (Note that

non-gcometrical means also exist, e.g., determining that the corresponding contour generator is a shadow

edge, or a gloss contour or a discontinuity in surface texture) Two geometrical criteria are suggested by the

preceding discussion. First consider qualitative symmetry where the correspondence lines are not

perpendicular to the axis of symmetry (as just discussed in the case of bilateral symmetry) but oblique to the

axis (as in figure 23b). When achieved, this skewed symmetry suggests a surface contour, as opposed to a

tangential contour, interpretation. Secondly, if parallel correspondence between contours can be achieved (as

in figures 13. 14b, and 15b) those contours can be interpreted as surface contours.
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5. SUMMARY

1. The analysis of the shape of a surface from surface contours may be decomposed into two problems:
reconstructing the corresponding 3-1) curves (the comour generators) and determining their relation to the
surface. 'Iis decomposition separates the problem of determining the projective geometry from that of
determining the intrinsic geometry.

2. The first problem is constrained by general position, planarity, symmetry, and minimum curvature
variation.

3. The second problem is reduced by assuming the angle between the surface and the plane containing the
contour generator is constant. Then if that angle is a right angle, the contour generator is geodesic; if the
angle is zero, the contour generator is asymptotic. In either case the contour generator is also a line of
curvature. Since it is also planar, the surface is locally a cylinder.

4. We also arrived at the cylinder restriction in the case of parallel surface contours, given the two forms of
the principle of general position. The opacity restriction is also useful, given the planarity and geodesic
restrictions, in understanding how the surface lies under a contour generator.

5. We have considered instances when the various constraints are valid. Surface markings on synthetic and
biological objects and the edges of cast shadows arc often geodesic and planar. Gloss contours are asymptotic
and planar, at least in the case of distant light sources and orthographic projection. Hence if the contour
generator can be reconstructed as a curve in 3-D, the surface orientation along the curve can be computed
subject to either the geodesic or asymptotic interpretations.

6. Constraints on the intrinsic geometry are also provided by surface contours even if the contour generator is
not well determined in space: Gloss contours, highlights, and shading edges tell us of the local Gaussian
curvature in some cases.

4 t .
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APPENDIX A
TILT EXPERIMENTS

Two experiments were performed concerning the judgment of surface tilt from configurations of intersecting

straight lines. The first established that the tilt judgments arc well defined relative to the geometry of the

figure and independent of the orientation of the figure on the display screen. The second experiment

demonstrated that the tilt judgment is dependent on the relative lengths of the two lines and on their angle of

intersection. It is concluded that we probably solve the tilt by assuming that the lines are actually

equal-length and that the angle of intersection is a right angle in three dimensions.

Judgements of surface slant were not made: the apparatus was designed to allow tilt to be decoupled from

slant. While judgments of surface slant from line drawings are generally poor both in terms of

underestimation ("regression to the frontal plane") and substantial variability, this study has discovered that

surface tilt judgements can be considerably more accurate and precise. The two experiments shared a

common design which is discussed in the following.

A.1 Experimental design

A.I.1 Apparatus

The subjects observed line-drawn figures on a Knight rasterscan CRT display. The lines were luminous

against a dark background: the roo~m was darkened. The figures were viewed monocularly through a 25 mm

diameter circular aperature of an occluding mask positioned roughly 50 cm from the display.

In order to measure tilt, it was planned that the Ss would adjust an actual rod so that it appeared normal to

the visualized surface. Thc rod was situated between the S and the CRT screen, attached to a transparent

plate by a small universal joint which allowed the rod to be placed at any spatial orientation. When viewed

monocularly the rod appeared to extend from the surface suggested by the figure towards the S. By grasping

the free end, the S could place it so that it appeared normal. The tilt component was then projected onto the

image plane (by displaying a vector with one end fixed so that it was coincident with the fixed end of the rod,

and rotating it until it was occluded by the rod from the S's viewpoint). Measuring the tilt component in this

manner avoided having the S adjust the tilt direct. However this precaution was unnecessary: Instead of this

apparatus, the S merely rotated a displayed vector to appear normal to the imagined surface. Surprisingly, the

Ss reported greater confidence when judging the projected tilt directly than when adjusting the rod. This was

reflected in improved consistency between trials. Presumably the rod was more difficult to position due to the

additional, implicit task of adjusting its slant.

In the first experiment of the first series, the length of the normal vector was roughly comparable to the

dimensions of the stimulus figure. The Ss commented that the length seemed inappropriately long when the

surface appeared nearly parallel to the image plane (slant roughly zero), and that the vector often appeared to

change length as it was rotated in the image. It was suspected that the length of the normal vector was

affecting the perceived surface orientation, therefore in subsequent experiments the vector was extended

beyond the field afforded by the aperature. This cnhanced the illusion of the vector being normal to the

surface. With the vector continuously displayed, Ss stated that a range of orientations were equally
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acceptable, however if the vector were removed and redisplaycd, the initial impression of the orientation of
die vector could be used to make more critical judgements. lhcrcfore, in later experiments, only the surface
Contours were continuously displayed, the normal cctor would be flashed on the screen, providing the S with
a glimpse of the vetor to compare with the imagined normal.

The control of stimulus display, rotation of the vector, and data collection were all performed interactively
by keyboard. Rotation was stepped clockwise and counterclockwise in five-degree and one-degree
increments. The S would position die normal vector by a succession of keystrokes that first flash the vector
then make incremental rotations.

A.1.2 Procedure
An attempt to measure the subjective tilt of an orthographically projected surface must contend with
spontaneous reversals in depth which affect the direction of the tilt. (In the absence of perspective, the depth
interpretation of a figure is ambiguous.) One factor that affects the interpretation is the orientation of the
figure in the image plane. For example, an ellipse oriented with a horizontal major axis can either be seen as a
disk with the lower edge nearer, or with the upper edge nearer. In general. when the perceived surface is
roughly horizontal, there is a tendency to prefer the interpretation with an upward pointing normal.
However, if the figure is oriented such that the surface is roughly vertical, the surface may be interpreted with
the normal pointing to the left or the right with roughly equal preference. With the ellipse, therefore, if the
figure were rotated in the image plane, at some point the observer may experience a reversal in depth. If the
left edge of the disk were seen to lie further than the right, then the normal would point horizontally to the
left, and vice versa.

Each S was given an introduction to the depth reversals. Given a figure. the S was asked to indicate the
surface orientation (by orienting a piece of paper or the palm of the hand). Then the S was asked to see it
"another way". The figures used in this study were oriented such that the tilt directions associated with the
two depth interpretations were in the second and fourth quadrant. However, the Ss were generally to use the
interpretation that placed the normal in the second quadrant. ihis restriction was not described to the Ss in
terms of quadrants: the Ss would occasionally place the vector in the fourth quadrant, whereupon it was
requested that the surface be seen "the other way". Reversals in interpretation were easy to achieve by all Ss.
Before collecting data, each S was given a few trials on figures that were similar to those in the experiment.
'he vector was supposed to be seen as the normal to an opaque surface, hence projecting towards the S.

A.2 Experiment I

'11le goal of the first experiment was to simply show that tilt judgements can he made with precision from a
simple intersection of two straight lines (see figure A-la). lhe tilt was expected to be somehow determined
by the contour geometry, independent of the orientation of the figure on the display screen. i.e.. there was an
expectation for a linear associalion beiween tilt judgements and image orientation (with unity slope).

A.2.1 Method
.Vitui: The intersection figure was described by the ratio R of the two line lengths, the obtuse angle of
intersection/f, and the orientation a of the figure on the screen (figure A-I b). '[1he surf.'ace tilt was measured

k __ __ __._____



Stevens -108- Appendix A

by the orientation r of the nonnal vector. All angles were measured counterclockwise. In experiment I.

R = 0.27 and fi 110 deg. "rhc experimental variable was a. Since spontaneous reversals in depth
interpretation were expected if the total rotation exceeded 90 deg, tie various orientations in the image were

restricted to within a range of 70 deg, i.e., a = 10, 20, 40, 60, and 80 deg. The figures subtended roughly

seven deg of visual angle. )uring this experiment, data was also collected for a similar figure, a

parallelogram. The parallelogram can also be described by the R, fP, and a parameters. In this experiment,

these parameters were the same as for the intersection figure.

Procedure: 'lie experiment involved randomized presentations of the two types of figures at five orientations.
Each of the 10 presentations were given once with unlimited viewing time. For each presentation, the S first
viewed the figure, then the normal vector was displayed and positioned. Six unpaid, volunteer graduate

students (five male, one female) were subjects.

A.2.2 Results

'he data were tabulated separately for the intersection and parallelogram figures. In both cases, the linear
association between r and a was significant: for the intersection figures r = 0.98 (1 = 27.736, df = 30,

p < 0.05), for the parallelogram figures r = 0.94 (1 = 14.473, d.f = 30, p < 0.05). The computed slopes of
simple linear regression lines were: 0.96 (standard error = 0.035) for the intersection figures and 0.95

(standard error = 0.066) for the parallelograms. Neither slope was significantly different from 1.0:

(I = 0.785, df = 30, p > 0.2) and (i = 1.126, d.f = 30, p > 0.2), respectively.
The data for both types of figure for each S were then analyzed individually, and the correlation

coefficients were all significant: the least significant finding was r = 0.94 (1 = 4.007, d.. = 3, p < 0.05). For
the intersection figures. the slopes of the linear regression lines for each S ranged from 0.88 to 1.05. In

comparing these slopes to 1.0. none of the differences reached significance (p > 0.2). For the parallelogram

figures, only the slopes for two Ss were significantly different from 1.0.

The values of 7 were reduced by the quantity (a-10.0) so that the judgements of tilt could be normalized to
one image orientation, a = 10 deg. The resulting mean tilt for the intersection figures was 104.0 deg
(sd. = 1.58 deg), and for the parallelogram was 101.4 deg (& d = 3.36 deg). The difference between these

two means did not reach significance (t = 1.57, (if = 8, p > 0.1).

A.2.3 Discussion

We conclude that. at least for the surfaces suggested by a pair of intersecting lines or a parallelogram, the tilt is

not functionally dependent on the particular orientation of tie figure in the image plane. The low standard
deviations of 1.58 and 3.36 deg denonstie that tilt judgements can be well defined. The parallelogram and

intersection figures share the same contour geometry, described by the parameters R and fP.
The basic finding given by this experiment was that on very simple configurations tie surface orientation

can be well defined. The intersection figure strongly suggests a surface, and tie tilt component can be judged

with precision. hllc intersection ligure is further examined in experiment If.

_ _ _ _ _ _ _ _ _ _-A: A_ __ _ _
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Figure A-1. lcstihjccts observed it simplc interscthion figure (a) for varying values of orientation a and
angle of intersection P. and adjosted the apparent orientation r of surfac til (b).
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A.3 Experiment i1

The goal of this experiment was to demonstrate that, for the intersection figure, tilt is dependent on the

relative lengths of the two contours and on their angle of intersection. From experiment I we can discount the

angle of orientation in the image as a functional parameter that governs the tilt.

13.1 Method

Stimuli: The intersection figures were presented with three values of angle of intersection 8 = 110. 130, and

170 deg, and three length ratios R = 0.272, 0.455, and 0.727. So that the presentations would appear varied,

two image orientations a = 20 and 60 deg were used. In this experiment, the normal vector was extended

beyond the field of view provided by the occluding mask.

Procedure: The total of 18 presentations were performed with successive presentations alternating between

a = 20 and 60 deg. The sequence was randomized in terms of/P and R. Fach presentation was given once.

however the data from the two image orientations would effectively provide two data points for each

combination ofrP and R. Five unpaid, volunteer graduate students (four male, one female) were subjects.

Only one subject (male) had participated in experiment I.

A.3.2 Results

'lbe r data collected at a = 60 were reduced by"40.0 in order to normalize to a = 20 deg. The values of T for

each image orientation were then tabulated for each of the nine combinations of P and R. 'T'he results %f a

two-way analysis of variance with equal replications are given in table A-1.

'lie data from a = 20 deg were compare to the adjusted data from a = 60 deg to further test whether

there is a functional dependence of r on the image orientation. The results are given in table A-2. The

differences between the two sample means reachcd significance in three instances (/ = 130, R = 0.27;

, = 110, R = 0.40; and ,P = 110, R = 0.73) however the actual differences are 0.4, 2.4 and 7.4 deg,

respectively. lhe mean tilt judgments are shown in figure A-2 as short line segments that extend from the

intersection, much as presented to the Ss. However in the actual experimental situation, the line segment that

was adjusted to appear normal to the intersection extended beyond the field of view and thus did not

contribute a length to the local configuration. In observing figure A-2. the apparent 3-1) length of the normal

will appear inappropriate for the configurations near the lower right, especially for the case where R = 0.73

and / = 110. As a consequence, the line representing the image of the normal will probably appear

overrotated counterclockwise in those cases. In the experiment, however, these choices of tilt orientation

appeared appropriate.

A.3.3 )iscussion

A strong functional dependence of T on both ,P and R was found. (However the judgements of tilt also

exhibited some dependence on the image orientation, as noted.) '1lie values of r were cvmpared to the

corresponding values that would he predicted if the lines were perpendicular and of equal length in 3-1).

l'hec values are given in the third column of table A-2. lie judgnent means did not diflhr significantly

from those predictions. except where indicated with superscripts.

................................................
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Source S.s. dtC M.S. (s.s./df.) M.S.R.

Between ~?1340.188 2 670.094 23.805
Between R 1351.438 2 675.719 24.005
/?R interaction 404,390 4 101.098 3.591
Residual 2280.047 81 28.149..

Trabic A-I. Analysis of variancc. Mean tilt (combined data from a = 20 and 60 deg) examined according to
effects of obtuse anglc ( and length ratio R. All M.S.R.'s rcach 0.05 significance.



( Stcvens - 112- Appendix A

R Predicted T Mean T for a = 20 Mean T for a= 60 Comparison

170 0.27 110.68 110.73 (1.53) 111.13 (1.76) (p> 0.2 )
170 0.45 111.69 110.33(3.06) 111.13(3.69) (p>0.2)
170 0.73 113.45 112.73 (2.82) 113.13 (4.59) (p>0.2)

130 0.27 112.12 112.93 (2.00) 113.33 (6.86) (p< 0.05)4

130 0.45 115.96 116.33 (4.60) 119.90 (4.09)2 (p> 0.2)
130 0.73 124.91 124.93 (6.92) 127.13 (6.53) (p >0.2)

110 0.27 111.45 111.53 (5.60) 117.13 (7.31) 1  (p >0.2)
110 0.45 114.48 117.73 (3.34)' 120.13 (10.86) (p < 0.05)4

110 0.73 124.88 123.70 (5.66) 131.10 (4.27) 3  (p <0.05)

(0.2 (p (0.1) 2(0.05 <p <0.1) 3(p (0.05) 4variances significantly different by -test.

Table A-2. Values of mean tilt T (with standard deviations in parentheses) for two image orientations, a= 20
and 60 dcg. over nine combinations of obtuse angle P and length ratio R. the last column shows the results
of comparison of the means at the two values of a. In comparing the two means, if the variances were not
significant, then a i-test was performed. Each mean was also compared to the corresponding theoretic value,
and except where superscriptcd, the differences did not reach significance (p > 0.2).

4

- - (*~J~
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/3=170

/A=130

/=1 10

R=0.27 R=0.45 R= 0.73

Figure A-2. Ilicsc figures show the mean judgements, of surface tilt as a function of relative line length R and
angle of intersection P. Note that thc apparent 3-1) length of die norinal will appcar inappropriate for the
configurations near dic lower right. As a consequence. the line representing the image of' the normal may
appear ovcrrotated counterclockwise in those cases. In the experimecnt, line representing die normal extended

4 beyond the field of view. and these choices of tilt orientation appcared appropriate.

im - *--w;cw
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Consider the case where the vectors are assumed to be equal-length and orthogonal, however their actual

lengths are unspecified. This case admits an exact solution to the surface orientation. Without loss of

generality, have u. = 1 and u, = 0 (i.e., the image coordinate system is rotated so that the x axis is collinear

with the image of the vector U. and the projecLed length is nonualized to 1). Then the expression for the

normal N is

N = -uivyi + (uv, - v,)j + vyk (A.I)

n = -uzvyi + (uzv, - vz)j. (A.2)
Since U and V are orthogonal, their dot product is zero

Vi + USV, = 0. (A.3)

And since they are equal-length

1 +u1 2 =V 2 + vy2 +V 2. (A.4)

Substituting v, from (A.3) into (A.4)

1 + U 12 Vz2  + Vz2/UZ2 . (A.5)

Similarly, subsititute v. from (A.3) into (A.2)

a = -Urvyi + (uLVIL + VIL/ul)j
or

uZ1 = -Urivyi + (u,2 + I)v. (A.6)

From (A.6) the tilt is expressed by
ta 1 [(u, 2 + l)v,/ -u,2vy. (A.7) -

We have now to sol. e (A.5) for u,2. Note that this assumes that u, is nonycro, i.e., that the vector u is

foreshortened. If that were not the case, then trivially T is 90 deg (perpendicular to u). Solving (A.5) for u, 2

gives
U22 = +(V,4 + V.2(2vy 2 + 2)- 2vY2 + v'4 + 1)1/2 + V,2 + Vy2 - 11/2. (A.8)

Substituting (A.8) into (A.7) gives us the desired expression for the tilt r.

Note further that from (A.3) we have that

Vz = -V,/Uz.

'Therefore u. and v, can be computed and therefore slant can also be computed from (A.1) by a similar

process.

In conclusion, when the visual system is presented with well-defined lengths at a corner or intersection

configuration, the angle of intersection is assumed to he a right angle. and the lengths are assumed equal.

'Ihesc two constraints are sufficient to admit a solution of local surface orientation tip to a slant reflection,

and, in fact, appear to be utilized by the human visual system.

'~' - - . .. ~ , 1
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A" APPENDIX B

SLANT RESOLUTION EXPERIMENTS

"Ic internal form in which slant is represented was studied experimentally, by measuring lower-limit

estimates of the internal precision to which slant is stored. While thc resolution cannot be directly measured,

the representation would have a grain of resolution no worse than the judgment variance. The apparatus

should therefore provide the subject with excellent visual input, and yet the visual task must be solvable only

by performing slant judgments. The magnitude of the variance as a function of slant angle was determined in

order to argue the likelihood of a various forms for representing slant.

Three experiments were performed: 'The first examined various slants in the range 0 < a < 44 degrees,

while holding tilt constant at 90 degrees (i.e., the surfaces were rotated about a horizontal axis). The second

experiment examined the same range of slants, but with tilt held constant at 45 degrees. Finally, slant

judgments for large slants (60 < a < 80 degrees) were examined for constant tilt of 90 degrees. The

conclusions of the three experiments are given in section B.5. 'lhe method was substantially the same in the

three experiments, hence described in detail in the following

B.I Experimental design

B.1.I Apparatus

'he experiment was designed to present a well illuminated and highly textured planar surface to a subject
whose task was to match the slant of that surface by adjusting the slant of another surface. The two surfaces

were placed so that they appeared adjacent in the visual field, however they differed considerably in distance.

The distances to the fixation points of the two surfaces were 38 and 76 cm. the adjustable surface being the

nearer. Both surfaces were viewed binocularly, however head movements were eliminated by using a chin

rest. 'he Ss were instructed to compare the slants of the surfaces at fixation points marked on the surfaces.

The line of sight to each fixation point was horizontal: the horizontal displacement required to shift gaze

between the two fixation points was approximately 10 degrees.

ach surface rotated about a horizontal axis (i.e.. the tilt wits vertical), and the slant (angle between surface

normal and the line of regard) was indicated by ia protractor. The slant could be set and read with precision

better than 1/2 degree. 'Tlie adjustable surface was 15 cm (horizontal dimension) by 17 cm: the other surface

was viewed through i 14 cm (horizontal dimension) by 9 cm opening in a barrier placed immediately in front

of that surface. The opening served to occlude the boundaries of the surface being examined. 'Ibe two

surfaces had similar illumination.

lhe texture used in the first experiment was a gauze material with fine fibers, chosen to provide an

excellent surface for stereo viewing. However a slight concern arose with that texture: '[he gauze provided

linear markings oriented with the surrace tilt that might have allowed judgments that did not require

matching perceived slants, but simply the adjustment of the surface slant so that the linear markings on the

two surlaces appeared parallel from various viewpoints. Although the chin rest prevented head movements.

the separate monocular views from the Iwo eyes might have been sufficient. I lence in the second and third

experiments the surface texture had no linear markings: the surflaces were the commercially-available
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Mccanormal "Nornatone type 651" transfer pattern (a texture resembling the patterns on a giraffe).

1.1.2 Procedure

-ich experiment consisted of multiple presentations of a randomized sequence of slants presented on the

farther surface. The Ss wcrc instructed to set the nearer, adjustable surface to the same slant as that presented,

converging on their match by intentional over- and under-estimation. The Ss closed their eyes or averted

their vision while the successive slant was adjusted for presentation. At the midpoint in the experiment the

Ss were given a few-minute rest. 'lhe first sequence was used for training, and that data was not analyzed.

B.2 Experiment I

The first experiment measured slant judgments in three vicinities: near zero degrees, near ten degrees, and

near forty degrees. Tihree slants were examined in each vicinity, differing by two degrees.

B.2.1 Method

Procedure: Four unpaid, volunteer, male subjects participated. Each had excellent vision, and found the task

of matching slants to be natural and easy. The Ss were presented with nine slants: 0, 2, and 4 degrees, 10, 12

and 14, and 40, 42, and 44 degrees. The tilt was held constant at 90 degrees (the slants were achieved by

rotations about a horizontal axis). The sequence of nine slants was presented seven times after the initial, trial

sequence.

11.2.2 Results

The slant judgments for each S were analyzed separately. The means and standard deviations were computed

for the seven trials at each slant (table B-1). The low standard deviations are notable. The slant judgments for

similar slant angles, for each subject were compared to determine if the means for similar slants were

significantly different, thereby providing another measure of our precision in performing slant judgments.

For instance, the slant judgments at 10 and 12 degrees were compared to determine if their means differed

significantly. It was found that for slants that differed by four degrees the means were significantly different

(p)0.05), except for subject K I where the difference in means at 40.0 and 44.0 degrees did not reach

significance (p>0.10, t = 1.45, d.f. = 12). The judgments of slants that differed by only two degrees differed

significantly (p> 0.05) in roughly one third of the comparisons. For instance, the judgments for subject JH at

0.0 and 2.0 degrees of slant were not significantly different, but at 2.0 and 4.0 degrees the means differed

significantly. Similarly, the judgments for subject SU between 12.0 and 14.0 degrees slant were significantly

different, but those between 10.0 and 12.0 were not. 'here was a weak overall tendency for slants differing by

two degrees to be less distinguishable at slant angles around 40 degrees than at smaller slant angles. The mean

slant values and the means of the standard deviations are shown in table 11-2.

1.3 Experiment I!

This experiment was similar to the first experiment, but performned with the apparatus tilted 45 degrees

(= 135 degrees).
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(

Slant Subject Jil Subject EM Subject SU Subject KI

0.0 1.21 (1.82) -0.71 (1.15) 0.21 (1.38) -0.43 (0.19)
2.0 2.93(1.71) 1.89 (2.43) 2.40 (1.52) 0.18 (1.48)
4.0 4.83 (0.72) 3.61 (2.60) 4.14 (1.73) 2.93 (1.06)

10.0 11.46 (1.75) 9.07 (1.67) 12.43 (2.44) 8.83 (1.33)
12.0 11.21 (1.68) 9.76 (3.12) 14.64 (1.75) 10.14 (1.86)
14.0 15.57 (3.10) 13.37 (1.48) 16.79 (1.35) 11.11 (1.27)

40.0 37.79 (2.38) 37.87 (1.92) 39.93 (2.09) 41.79 (2.74)
42.0 38.86 (3.08) 37.76 (1.39) 41.11 (1.37) 42.64 (3.00)
44.0 41.11 (2.36) 39.57 (1.72) 42.43 (1.72) 43.50 (1.53)

'Tablc B-1: Individual subject means (and standard deviations)

Slant Mean (std. dev.)

0.0 0.07 (1.14)
2.0 1.85 (1.79)
4.0 3.88 (1.52)

10.0 10.45 (1.80)12.0 11.44 (2.10)
14.0 14.21 (1.80)

40.0 39.34 (2.28)
42.0 40.09(2.21)
44.0 41.65 (1.83)

Table 11-2: Mean slant judgmcnts, and mean subject standard deviations

LIL



Stevens - 118- Appendix B

1.3.1 Method
Procedure: Four unpaid, volunteer, male subjects participated (three of these participated in the first
experiment also). The Ss were presented with randomized sequences of four slants: 0, 2, 42, and 44 degrees.
Il-ch S had a trial sequcnce followed by ten sequences for which data were collected.

B.3.2 Results
The means and standard deviations of slant judgments were computed separately for each S and each slant
angle (table 11-3). 'he slant judgments at a tilt of 45 degrees arc not significantly different than those at tilt of
90 degrees from experiment I (neither the mean slant judgments, nor the means of the standard deviations of
the judgments differed significantly by t-test). '[he second test was to determine for each S whether the mean
judgments at zero and at two degrees slant were significantly different (similarly for 42 and 44 degrees slant).
Only in two instances the means were not significantly different: for subject SU at 42 versus 44 degrees
(p >0.1, t = 1.57, d.f. = 18), and for subject I)W between zero and two degrees (p> 0.2, t = 1.17, d.f. = 18).
Otherwise, the judgments of slant differing only by two degrees were significantly different. The data
collected at 45 degrees of tilt demonstrated no consistent underestimation or regression to the frontal plane.

B.4 Experiment III

]'he final experiment examined slants near 60 and 80 degrees. Tilt was 90 degrees.

B.4.1 Method
Prmcedure: Four unpaid, volunteer, male subjects participated (some were in the previous experiments). The
slants were 60, 62, and 78, 80 degrees presented in seven trials in randomized sequence. The data from the
first trial were not used.

B.4.2 Results
The data were analyzed in the same manner as in the previous two experiments, and presented in tables B-5
and 11-6. Again there is no regression to the frontal plane: the judgments are accurate and have low variance.
The standard deviations for slants near 80 degrees are slightly less than at 60 degrees, on the average: I'he
most significant difference was between 60 and 78 degrees (p < 0.10, 1 = 1.95, d.f. = 6).

The individual judgments at 60 and 62 degrees were compared to see if the mean judgments were
significantly different (similarly for 78 versus 80 degrees). Only for two subjects were the means

insignificantly different (between 60 and 62 degrees: for subject KI (p>0.20, t = 1.34, d.f. = 10) and for
subject EM (p > 0.05, 1 = 2.03. d.f. = 10).

By now we have accumulated the standard deviations of slant judgments over a range of slants from zero to
80 degrees (see figure I1-1). The mean value wits 1.65 degrees.

B.5 Discussion

Itic experiments have demonstrated that slanted surfaces can be accurately aligned on the basis of visual
infortnation so that they are spatially parallel. The experimental design was such that the visual task of

matching slant wits probably achieved by comparing the perceived slans of tie two surfaces. and matching
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Slant Subject DW Subject EM Subject SU Subject KI

0.0 0.85 (0.91) 2.75 012) 0.80(1.01) 1.19(1.60)
2.0 1.75 (2.26) 4.25 (1.53) 3.23 (1.25) 3.86 (1.53)

42.10 40.45 (2.79) 44.22 (2.91) 40.80 (1.23) 41.22 (1.56)
44.0 44.05 (1.77) 47.93 (2.41) 41.88 (1.78) 44.06 (2.11)

Table Bl-3: Individual subject means (and standard deviations)

Slant Mean (std. dev.)

0.0 1.40(1.21)I 2.0 3.27 (1.64)

42.0 41.67 (2.12)
44.0 44.48 (2.02)

Table 11-4: Mcan slant judgments, and mean subject standard deviations

di
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Slant Subject DW Subject EM Subject MM Subject KI

60.0 60.79 (1.49) 60.75 (1.86) 56.66 (0.75) 59.38 (2.12)
62.0 62.67 (0.52) 62.71 (1.44) 60.00 (1.52) 61.17 (2.48)

78.0 77.58 (0.74) 80.88 (1.00) 77.00 (0.84) 76.92 (1.20)
80.0 79.83 (0.61) 82.83 (1.08) 78.96 (1.31) 78.42 (1.07)

Table B-5: Individual subject means (and standard deviations)

Slant Mean (std. dcv.)

60.0 59.40 (1.56)
62.0 61.64 (1.49)

78.0 78.09 (0.94)
80.0 80.01 (1.02)

Table 11-6: Mean slant judgments, and mean subject standard deviations
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F~igure B-1. The standard deviations of slanitjudgmnents were computed for each subject. for cach slant angle.
lIbc averatges across subjects are plotted above. Firror bars show hitcr-subjcct variance (bar length =two
standard deviations). TIhe mean value was 1.65 degrees.
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those values.
To reiterate, the two surfaces were adjacent in the visual field but differed considerably in distance. Head

movement was not allowed, and the boundaries of the target surface were obscured (except for extreme slants
where the top and bottom edges were visible but unlikely to be useful to the S since the dimensions of the two
surfaces were different and the Ss never saw the overall dimensions of the surface whose slant was to be
matched). 'he latter two experiments used surfaces that provided a rich texture for stereopsis but did not
allow the simple aligning of texture edges so as to be parallel from both left and right eyes.

These experiments demonstrate that the visual system can match spatial orientations with precision, even
when the distances to the surfaces are dissimilar. The average standard deviation is surprisingly small (1.65
degrees). Furthermore, for each S, the mean judgments of slant almost always differed significantly when the
slants to be matched differed by only two degrees. These two results tell us something about the precision to
which slant may be resolved, if the judgments indeed were based on comparing perceived slants: the grain of
resolution in surface slant must at least as good as the precision in slant judgments, i.e., better than two
degrees at all slants.

In what manner is slant represented (by angle a, cosa, or tanu, for instance)? The cosine does not vary
rapidly near zero degrees: cos (0 degrees) = 1.0000, cos (2 degrees) = 0.9994, cos (4 degrees) = 0.9976. Thus
if slant were represented by cosa, an inordinately fine grain of resolution in the representation would be
necessary to allow zero and four degrees of slant to be distinguished, let alone zero and two degrees of slant
angle. On this basis, this form of representation is considered unlikely.

If the slant were represented by the tangent of the slant angle, then in order to resolve between s;ants
around zero differing by a few degrees of slant angle (where tan (0 degrees) = 0.000. tan (2 degrees) =
0.0349, tan (4 degrees) = 0.0699) and simultaneously represent the range of slant angles from zero to 88
degrees (i.e., within two degrees resolution of 90 degrees slant), then the grain of resolution would have to be
on the order of one part in eight hundred. Although this experiment does not resolve the question of how
slant is represented, it probably allows us rule out the cosine and tangent forms. If slant angle were
represented directly, the range of slants would be represented by less than one hundred resolvable values
which (effectively) vary linearly with slant angle. The internal resolution would be commensurate with the
measured j.n.d. of slant.
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